Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2332=(23)110x22=8110x4
3223=(32)110x33=9110x27
Vì 9110x27 > 8110x4 =>2332 < 3223
Ta có:
2332 < 2333 = (23)111 = 8111
3223 > 3222 = (32)111 = 9111
Vì 2332 < 8111 < 9111 < 3223
=> 2332 < 3223
Bài giải
Ta có :
\(2^{255}=\left(2^{17}\right)^{15}\) \(>\left(2^{16}\right)^{15}=\left(2^8\right)^{30}=256^{30}\)
\(3^{150}=\left(3^{10}\right)^{15}=\left(3^5\right)^{30}=243^{30}\)
\(\text{Vì }256^{30}>243^{30}\text{ }\Rightarrow\text{ }2^{255}>3^{150}\)
1 ) Ta có : \(2^{332}< 2^{333}=\left(2^3\right)^{111}=8^{111}\)
\(2^{223}>3^{222}=\left(3^2\right)^{111}=9^{111}\)
Vì : \(8^{111}< 9^{111}\)
\(\Rightarrow2^{332}< 3^{223}\)
2 ) Ta có : \(\left(222^3\right)^{111}=\left(2.111\right)^3=8.111^3\)
\(3^{222}=\left(333^2\right)^{111}=\left(3.111\right)^2=9.111^2\)
Vì : \(8.111^2< 9.111^2\)
\(\Leftrightarrow2^{333}< 3^{222}\)
1. Ta có:
\(2^{332}< 2^{333}=\left(2^3\right)^{111}=8^{111}\)
\(3^{223}>3^{222}=\left(3^2\right)^{111}=9^{111}\)
Vì \(8^{111}< 9^{111}\) nên \(2^{332}< 8^{111}< 9^{111}< 3^{223}\Rightarrow2^{332}< 3^{223}\)
Vậy \(2^{332}< 3^{223}\)
2. Ta có:
\(2^{333}=\left(2^3\right)^{111}=8^{111}\)
\(3^{222}=\left(3^2\right)^{111}=9^{111}\)
Vì \(8^{111}< 9^{111}\) nên \(2^{333}< 3^{222}\)
Vậy \(2^{333}< 3^{222}\)
a) \(2^{225}\)= \(\left(2^3\right)^{75}\)= \(8^{75}\)
\(3^{150}\)= \(\left(3^2\right)^{75}\)= \(9^{75}\)
Vì \(8^{75}\)< \(9^{75}\)
Nên \(2^{225}\)< \(3^{150}\)
b) \(2^{332}\)< \(2^{333}\)= \(\left(2^3\right)^{11}\)= \(8^{11}\)
\(3^{223}\)> \(3^{222}\)= \(\left(3^2\right)^{11}\)= \(9^{11}\)
Vì \(8^{11}\)< \(9^{11}\)
Nên : \(2^{332}\)< \(3^{223}\)
a) ta có: 34000 = (34)1000 = 811000
92000 = (92)1000 = 811000
=> ....
C2: ta có: 92000 = (32)2000= 34000
b) ta có: 2332 < 2333 = (23)111 = 8111
3223 > 3222 = (32)111 = 9111
=> 8111 < 9111
=> 2332 < 3223
3323 lon hon
So sánh 2332 và 3223