Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\frac{9^{15}.6^{30}}{27^{21}.8^{11}}\)
\(=\frac{\left(3^2\right)^{15}.3^{30}.2^{30}}{\left(3^3\right)^{21}.\left(2^3\right)^{11}}\)
\(=\frac{3^{30}.3^{30}.2^{30}}{3^{63}.2^{33}}\)
\(=\frac{3^{60}.2^{30}}{2^{63}.3^{33}}=\frac{1}{2^3.3^3}=\frac{1}{216}\)
làm mẫu một bài còn lại tương tự nha bn =)
\(\frac{9^{15}.6^{30}}{27^{21}.8^{11}}=\frac{\left(3^2\right)^{15}.\left(2.3\right)^{30}}{\left(3^3\right)^{21}.\left(2^3\right)^{11}}=\frac{3^{60}.2^{30}}{3^{63}.2^{33}}=\frac{1}{3^3.2^3}\)
\(\frac{45^{12}.49^7}{35^{13}.27^8}=\frac{\left(5.3^2\right)^{12}.\left(7^2\right)^7}{\left(5.7\right)^{13}.\left(3^3\right)^8}=\frac{5^{12}.3^{24}.7^{14}}{5^{13}.7^{13}.3^{24}}=\frac{7}{5}\)
#
a: \(=\dfrac{5^{42}\cdot7^{30}}{5^{40}\cdot7^{30}\cdot10}=\dfrac{5^2}{10}=\dfrac{25}{10}=\dfrac{5}{2}\)
b: \(=\dfrac{3^{18}\cdot5^{10}}{5^{10}\cdot3^{10}\cdot3^9}=\dfrac{1}{3}\)
ta có \(\sqrt{7}\) sẽ nằm trong khoảng từ \(2\rightarrow3\)
còn \(\sqrt{15}\)sẽ nằm trong khoảng từ \(3\rightarrow4\)
mà \(3+4=7\) và \(\sqrt{7}< 3\)
\(\sqrt{15}< 4\)
\(\Rightarrow\sqrt{7}+\sqrt{15}< 7\)
\(7<9\Rightarrow\sqrt{7}<\sqrt{9}=3\)
\(15<16\Rightarrow\sqrt{15}<\sqrt{16}=4\)
\(\Rightarrow\sqrt{7}+\sqrt{15}<3+4=7\)
\(\frac{4^{15}}{7^{30}}=\frac{2^{30}}{7^{30}}\) và \(\frac{8^{10}.3^{30}}{7^{30}.4^{15}}=\frac{2^{30}.3^{30}}{7^{30}.2^{30}}=\frac{2^{30}}{7^{30}}\)Vậy hai vế bằng nhau
Ta có:
\(\frac{4^{15}}{7^{30}}=\frac{\left(2^2\right)^{15}}{7^{30}}=\frac{2^{30}}{7^{30}}=\left(\frac{2}{7}\right)^{30}\)
\(\frac{8^{10}x3^{30}}{7^{30}x4^{15}}=\frac{\left(2^3\right)^{10}x3^{30}}{7^{30}x\left(2^2\right)^{15}}=\frac{2^{30}x3^{30}}{7^{30}x2^{30}}=\frac{3^{30}}{7^{30}}=\left(\frac{3}{7}\right)^{30}\)
Nhận thấy, 2 số đều có cùng số mũ mà \(\frac{3}{7}>\frac{2}{7}\)
=> \(\frac{8^{10}x3^{30}}{7^{30}x4^{15}}>\frac{4^{15}}{7^{30}}\)
b) Ta có: \(\frac{\sqrt{5^2}+\sqrt{35^2}}{\sqrt{7^2}+\sqrt{49^2}}=\frac{5+35}{7+49}=\frac{40}{56}=\frac{5}{7}\) (1)
Lại có: \(\frac{\sqrt{5^2}-\sqrt{35^2}}{\sqrt{7^2}-\sqrt{49^2}}=\frac{5-35}{7-49}=\frac{-30}{-42}=\frac{5}{7}\) (2)
Từ biểu thức (1) và biểu thức (2)
=> \(\frac{\sqrt{5^2}+\sqrt{35^2}}{\sqrt{7^2}+\sqrt{49^2}}=\frac{\sqrt{5^2}-\sqrt{35^2}}{\sqrt{7^2}-\sqrt{49^2}}\)
a) \(15=\sqrt{225}\)
\(\sqrt{235}=\sqrt{235}\)
vi \(225< 235\)nen \(\sqrt{225}< \sqrt{235}\)
vay \(15< \sqrt{235}\)
Câu b)
Ta có \(\sqrt{7}< \sqrt{9}\Leftrightarrow\sqrt{7}< 3\)
\(\sqrt{15}< \sqrt{16}\Leftrightarrow\sqrt{15}< 4\)
Cộng theo vế: \(\sqrt{7}+\sqrt{15}< 3+4\) hay \(\sqrt{7}+\sqrt{15}< 7\)
Ta có : \(\frac{4^{15}}{7^{10}}=\frac{\left(2^2\right)^{15}}{7^{10}}=\frac{2^{30}}{7^{10}}\)
\(\frac{8^{10}.3^{30}}{7^{30}.1^{15}}=\frac{\left(2^3\right)^{10}.3^{30}}{7^{30}}=\frac{2^{30}.3^{30}}{7^{30}}=\frac{\left(2.3\right)^{30}}{7^{30}}=\frac{6^{30}}{7^{30}}\)
Mà : \(\frac{2^{30}}{7^{10}}=\frac{\left(2^3\right)^{10}}{7^{10}}=\frac{8^{10}}{7^{10}}\)
\(\frac{6^{30}}{7^{30}}=\frac{\left(6^3\right)^{10}}{\left(7^3\right)^{10}}=\frac{216^{10}}{343^{10}}\)
Vì : \(\frac{8}{7}>\frac{216}{343}\Rightarrow\frac{8^{10}}{7^{10}}>\frac{216^{10}}{343^{10}}\)
\(\Rightarrow\frac{4^{15}}{7^{10}}>\frac{8^{10}.3^{30}}{7^{30}.4^{15}}\)
giúp mình vs
cho n là số tự nhiên
a, (n+ 10) (n+ 15) chia hết cho 2
b, n (n+ 1) (n+2) chia hết cho 2 và 3
c, n (n+ 1) (2n+1) chia hết cho 2 và 3
2115.7 < 2715.497
Bùi Danh Nghệ: 12345 là sao