Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
252525/666666= 252525:10101/ 666666:10101= 25/66
tương tự với 252525/666666
=> 25/66=252525/666666=252525/666666
1212/1313=12/13
2424/2525=24/25
phần bù của 12/13 là:1-12/13=1/13
phần bù của 24/25: 1-24/25=1/25
vì phần bù 1/13>1/25 nên 1212/1313>2424/2525
Câu 2
A= 1991 x1999= 1991 x(1995 + 4) = 1991 x1995 + 1991 x 4
B=1995x 1995= 1995 x (1991 + 4) = 1995 x 1991 + 1995 x 4
vì 1995 x 4 > 1991 x 4 nên 1995 x1991 + 1995 x 4 > 1991 x1995 + 1991 x 4 vậy A <B
M N P H O I K Q
\(a,\)* Xét hai tam giác MNK và KNP có :
+ Ta có : \(KM=\frac{1}{2}KP\)
+ Chung chiều cao hạ từ N
+ Do đó \(S_{MNK}=\frac{1}{2}S_{KNP}\)
b, Xét hai tam giác IKN và MNK có :
Ta có : \(IN=\frac{2}{3}MN\)
+ Chung chiều cao hạ từ K
+ Do đó : \(S_{IKN}=\frac{2}{3}S_{MNK}\)
1.các p/s đó là:
1/24;24/1;2/12;12/2;3/8;8/3;4/6;6/4.
2.
a,1212/1515=4/5
b,363636/545454=2/3
k cho mình nha!
Bài 1:
Ta có:
\(N=\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)
Do \(\hept{\begin{cases}\frac{2017}{2018+2019}< \frac{2017}{2018}\\\frac{2018}{2018+2019}< \frac{2018}{2019}\end{cases}\Rightarrow\frac{2017}{2018+2019}+\frac{2018}{2018+2019}< \frac{2017}{2018}+\frac{2018}{2019}}\)
\(\Leftrightarrow N< M\)
Vậy \(M>N.\)
Bài 2:
Ta có:
\(A=\frac{2017}{987653421}+\frac{2018}{24681357}=\frac{2017}{987654321}+\frac{2017}{24681357}+\frac{1}{24681357}\)
\(B=\frac{2018}{987654321}+\frac{2017}{24681357}=\frac{1}{987654321}+\frac{2017}{987654321}+\frac{2017}{24681357}\)
Do \(\hept{\begin{cases}\frac{2017}{987654321}+\frac{2017}{24681357}=\frac{2017}{987654321}+\frac{2017}{24681357}\\\frac{1}{24681357}>\frac{1}{987654321}\end{cases}}\)
\(\Rightarrow\frac{2017}{987654321}+\frac{2017}{24681357}+\frac{1}{24681357}>\frac{1}{987654321}+\frac{2017}{987654321}+\frac{2017}{24681357}\)
\(\Leftrightarrow A>B\)
Vậy \(A>B.\)
Bài 3:
\(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}=1-\frac{1}{2017}+1-\frac{1}{2018}+1-\frac{1}{2019}+1+\frac{3}{2016}\)
\(=1+1+1+1-\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2019}+\frac{3}{2016}\)
\(=4-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\right)\)
Do \(\hept{\begin{cases}\frac{1}{2017}< \frac{1}{2016}\\\frac{1}{2018}< \frac{1}{2016}\\\frac{1}{2019}< \frac{1}{2016}\end{cases}\Rightarrow\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}< \frac{1}{2016}+\frac{1}{2016}+\frac{1}{2016}=\frac{3}{2016}}\)
\(\Rightarrow\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\)âm
\(\Rightarrow4-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\right)>4\)
Vậy \(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}>4.\)
Bài 4:
\(\frac{1991.1999}{1995.1995}=\frac{1991.\left(1995+4\right)}{\left(1991+4\right).1995}=\frac{1991.1995+1991.4}{1991.1995+4.1995}\)
Do \(\hept{\begin{cases}1991.1995=1991.1995\\1991.4< 1995.4\end{cases}}\Rightarrow1991.1995+1991.4< 1991.1995+1995.4\)
\(\Rightarrow\frac{1991.1995+1991.4}{1991.1995+4.1995}< \frac{1991.1995+1995.4}{1991.1995+4.1995}=1\)
\(\Rightarrow\frac{1991.1999}{1995.1995}< 1\)
Vậy \(\frac{1991.1999}{1995.1995}< 1.\)
a)623,5+148,9+506,7+217,3=1496,4
b)543,7+208,5+127,9+616,3=1496,4
Vì 1496,4=1496,4 nên 2 tổng trên bằng nhau