Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\frac{2014^{2015}+1}{2014^{2015}+1}\)\(=1\)
\(\frac{2014^{2014}+1}{2014^{2013}+1}\)\(>1\)
\(\Rightarrow A< B\)
Vậy \(A< B\)
Gợi ý nhé: bạn hãy so sánh 2014A và 2014B rồi suy ngược lại A và B
Ta có:
2014A=20142014+ 2014/20142014+1=1+2013/20142014+1
2014B=20142013+2014/20142013+1=1+2013/20142013+1
vì 1+2013/20142014+1<1+2013/20142013+1 nên 10A < 10B
suy ra A<B
Ta có công thức :
\(\frac{a}{b}>\frac{a+c}{b+c}\)\(\left(\frac{a}{b}>1;a,b,c\inℕ^∗\right)\)
\(A=\frac{99^{2015}+1}{99^{2014}+1}>\frac{99^{2015}+1+98}{99^{2014}+1+98}=\frac{99^{2015}+99}{99^{2014}+99}=\frac{99\left(99^{2014}+1\right)}{99\left(99^{2013}+1\right)}=\frac{99^{2014}+1}{99^{2013}+1}=B\)
\(\Rightarrow\)\(A>B\)
Chúc bạn học tốt ~
A = \(\frac{2015^{2016}+1}{2015^{2015}+1}=\frac{2015^{2015}+1}{2015^{2015}+1}+\frac{2015}{2015^{2015}+1}=1+\frac{2015}{2015^{2015}+1}\)
B = \(\frac{2014^{2015}+1}{2014^{2014}+1}=\frac{2014^{2014}+1}{2014^{2014}+1}+\frac{2014}{2014^{2014}+1}=1+\frac{2014}{2014^{2014}+1}\)
Rồi bạn tự so sánh nha
Ta có: \(A=\frac{2014^{2014}+1}{2014^{2015}+1}\)
\(\Rightarrow2014A=\frac{2014^{2015}+2014}{2014^{2015}+1}=1+\frac{2013}{2014^{2015}+1}\)
\(B=\frac{2014^{2013}+1}{2014^{2014}+1}\)
\(\Rightarrow2014B=\frac{2014^{2014}+2014}{2014^{2014}+1}=1+\frac{2013}{2014^{2014}+1}\)
Mà \(\frac{2013}{2014^{2015}+1}< \frac{2013}{2014^{2014}+1}\Rightarrow1+\frac{2013}{2014^{2015}+1}< \frac{2013}{2014^{2014}+1}\Rightarrow2009A< 2009B\)
\(\Rightarrow A< B\)
Vậy A < B
Đặt A= 2015^2013+1/2015^2014+7, B=2015^2014-2/2015^2015-2
2015A= 2015^2014+2015/2015^2014+7= 1 + (2008/2015^2014+7)
2015B= 2015^2015-4030/2015^2015-2= 1 - (4028/2015^2015-2)
Do 2015A>1>2015B nên A>B
nhân cả tử và mẫu của B với 10
=> A>B
nhận cả tử và mẫu với 10
=>A > B