Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
h) Ta có: \(\frac{n+1}{n+2}=1-\frac{1}{n+2}\)
\(\frac{n+3}{n+4}=\frac{1}{n+4}\)
Vì \(n+2< n+4\)\(\Rightarrow\frac{1}{n+2}>\frac{1}{n+4}\)
\(\Rightarrow1-\frac{1}{n+2}< 1-\frac{1}{n+4}\)\(\Rightarrow\frac{n+1}{n+2}< \frac{n+3}{n+4}\)
Ta số phân số chung gian là \(\frac{n+1}{n+3}\)
Vì \(\frac{n}{n+3}< \frac{n+1}{n+3}< \frac{n+1}{n+2}\)
Nên \(\frac{n}{n+3}< \frac{n+1}{n+2}\)
Ủng hộ nhé !
a) \(\frac{5}{9}=\frac{20}{36};\frac{1}{4}=\frac{9}{36}\)
\(\frac{20}{36}>\frac{9}{36}\Rightarrow\frac{5}{9}>\frac{1}{4}\)
\(\frac{72}{73}=\frac{4248}{4307};\frac{58}{59}=\frac{4234}{4307}\)
\(\frac{4248}{4307}>\frac{4234}{4307}\Rightarrow\frac{72}{73}>\frac{58}{59}\)
\(\frac{n}{n+3}=\frac{n+1}{n-1}=\frac{n+1}{3-2}=\frac{n+1}{n+2}\)
\(\Rightarrow\frac{n}{n+3}=\frac{n+1}{n+2}\)
Ta có :
\(\frac{n}{n+3}< \frac{n}{n+2}\)
\(\frac{n+1}{n+2}>\frac{n}{n+2}\)
\(\Rightarrow\frac{n}{n+3}< \frac{n}{n+2}< \frac{n+1}{n+2}\)
Vậy \(\frac{n}{n+3}< \frac{n+1}{n+2}\)
\(\frac{n+1}{n+2}\)và \(\frac{n}{n+3}\)
<=>\(\hept{\begin{cases}\left(n+1\right).\left(n+3\right)=n^2+4n+3\\\left(n+2\right).n=n^2+2n\end{cases}}\)
<=>\(n^2\)+4n+3 > \(n^2\)+2n
<=>\(\left(n+1\right).\left(n+3\right)>\left(n+2\right).n\)
<=>\(\frac{n+1}{n+2}>\frac{n}{n+3}\)