Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Tìm x
\(\frac{11}{2}.x+\frac{1}{3}.x=1\)
\(\Rightarrow x\left(\frac{11}{2}+\frac{1}{3}\right)=1\)
\(\Rightarrow x\left(\frac{33}{6}+\frac{2}{6}\right)=1\)
\(\Rightarrow x.\frac{35}{6}=1\)
\(\Rightarrow x=\frac{6}{35}\)
2) So sánh
\(\frac{59}{40}< \frac{50}{31}\)( cái này bạn quy đồng là ra, mik chỉ ghi kq, bạn tự tính )
3)\(\frac{1}{3}+\frac{4}{7}-\frac{5}{14}-\frac{1}{2}-\frac{2}{3}\)
\(=\left(\frac{1}{3}-\frac{2}{3}\right)+\left(\frac{4}{7}-\frac{5}{14}\right)-\frac{1}{2}\)
\(=-\frac{1}{3}+\frac{3}{14}-\frac{1}{2}\)
\(=-\frac{13}{21}\)
1)\(\frac{11}{2}.x+\frac{1}{3}.x=1\)
\(x.\left(\frac{11}{2}+\frac{1}{3}=1\right)\)
\(x.\frac{35}{6}=1\)
\(x=1:\frac{35}{6}\)
\(x=\frac{6}{35}\)
2) Ta có:
\(\frac{59}{40}=\frac{1829}{1240}\)
\(\frac{50}{31}=\frac{2000}{1240}\)
Vì \(2000>1829\Rightarrow\frac{2000}{1240}>\frac{1829}{1240}\Rightarrow\frac{50}{31}>\frac{59}{40}\)
3)\(\frac{1}{3}+\frac{4}{7}-\frac{5}{14}-\frac{1}{2}-\frac{2}{3}\)
\(=\left(\frac{1}{3}-\frac{2}{3}\right)+\left(\frac{4}{7}-\frac{5}{14}-\frac{1}{2}\right)\)
\(=-\frac{1}{3}+\left(\frac{8}{14}-\frac{5}{14}-\frac{7}{14}\right)\)
\(=\frac{-1}{3}+\frac{-4}{14}\)
\(=\frac{-1}{3}+\frac{-2}{7}\)
\(=\frac{-7}{21}+\frac{-6}{21}\)
\(=\frac{-13}{21}\)
Bài 1 :
Ta có :
\(A=\frac{10^{17}+1}{10^{18}+1}=\frac{\left(10^{17}+1\right).10}{\left(10^{18}+1\right).10}=\frac{10^{18}+10}{10^{19}+10}\)
Mà : \(\frac{10^{18}+10}{10^{19}+10}>\frac{10^{18}+1}{10^{19}+1}\)
Mà \(A=\frac{10^{18}+10}{10^{19}+10}\)nên \(A>B\)
Vậy \(A>B\)
Bài 2 :
Ta có :
\(S=\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2013}\)
\(\Rightarrow S=\frac{2014-1}{2014}+\frac{2015-1}{2015}+\frac{2016-1}{2016}+\frac{2013+3}{2013}\)
\(\Rightarrow S=1-\frac{1}{2014}+1-\frac{1}{2015}+1-\frac{1}{2016}+1+\frac{3}{2013}\)
\(\Rightarrow S=4+\frac{3}{2013}-\left(\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\right)\)
Vì \(\frac{1}{2013}>\frac{1}{2014}>\frac{1}{2015}>\frac{1}{2016}\)nên \(\frac{3}{2013}-\left(\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\right)>0\)
Nên : \(M>4\)
Vậy \(M>4\)
Bài 3 :
Ta có :
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.......+\frac{1}{100^2}\)
Suy ra : \(A< \frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+....+\frac{1}{99.101}\)
\(\Rightarrow A< \frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{2.4}+......+\frac{2}{99.101}\right)\)
\(\Rightarrow A< \frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-......-\frac{1}{101}\right)\)
\(\Rightarrow A< \frac{1}{2}.\left[\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{99}\right)-\left(\frac{1}{3}+\frac{1}{4}+......+\frac{1}{101}\right)\right]\)
\(\Rightarrow A< \frac{1}{2}.\left(1+\frac{1}{2}-\frac{1}{100}-\frac{1}{101}\right)\)
\(\Rightarrow A< \frac{1}{2}.\left(1+\frac{1}{2}\right)\)
\(\Rightarrow A< \frac{3}{4}\)
Vậy \(A< \frac{3}{4}\)
Bài 4 :
\(a)A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{2015.2017}\)
\(\Rightarrow A=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{1}{2015.2017}\right)\)
\(\Rightarrow A=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{2015}-\frac{1}{2017}\right)\)
\(\Rightarrow A=\frac{1}{2}.\left(1-\frac{1}{2017}\right)\)
\(\Rightarrow A=\frac{1}{2}.\frac{2016}{2017}\)
\(\Rightarrow A=\frac{1008}{2017}\)
Vậy \(A=\frac{1008}{2017}\)
\(b)\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+......+\frac{1}{x\left(x+2\right)}=\frac{1008}{2017}\)
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{x.\left(x+2\right)}=\frac{2016}{2017}\)
\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{x}-\frac{1}{x+2}=\frac{2016}{2017}\)
\(1-\frac{1}{x+2}=\frac{2016}{2017}\)
\(\Rightarrow\frac{1}{x+2}=1-\frac{2016}{2017}\)
\(\Rightarrow\frac{1}{x+2}=\frac{1}{2017}\)
\(\Rightarrow x+2=2017\)
\(\Rightarrow x=2017-2=2015\)
Vậy \(x=2015\)
\(P=1+\frac{1}{2^2}+...+\frac{1}{2014^2}>1+\frac{1}{2^2}.1007\)
\(\Rightarrow P>1+\frac{1007}{4}\)
Vì \(P>1+\frac{1007}{4}\)
Mà \(1+\frac{1007}{4}>1+\frac{3}{4}\)
=>P>Q
BÀI 1:
\(P=1+\frac{1}{2}+\frac{1}{3}+........+\frac{1}{2^{100}-1}\)
\(\Leftrightarrow A=1+\frac{1}{2}+\frac{1}{3}+..........+\frac{1}{2^{100}-1}+\frac{1}{2^{100}}-\frac{1}{2^{100}}\)
\(\Leftrightarrow A=1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{2^2}\right)+........+\left(\frac{1}{2^{99}+1}+.......+\frac{1}{2^{100}}\right)-\frac{1}{2^{100}}\)
\(\Leftrightarrow A>1+\frac{1}{2}+\frac{1}{2^2}\cdot2+\frac{1}{2^3}\cdot2^2+........+\frac{1}{2^{100}}\cdot2^{99}-\frac{1}{2^{100}}\)
\(\Leftrightarrow A>1+\frac{1}{2}\cdot100-\frac{1}{2^{100}}\)
\(\Leftrightarrow A>51-\frac{1}{2^{100}}>51-1=50\)
\(\Rightarrow DPCM\)
BÀI 2 :
TA CÓ: \(A=1+\frac{1}{2}+\frac{1}{2^2}+......+\frac{1}{2^{100}}\)VÀ \(B=2\)
= > CẦN CHỨNG MINH \(\frac{1}{2}+\frac{1}{2^2}+.......+\frac{1}{2^{100}}\)NHƯ THẾ NÀO SO VỚI 1
ĐẶT \(C=\frac{1}{2}+\frac{1}{2^2}+.......+\frac{1}{2^{100}}\)
\(\Leftrightarrow2C=1+\frac{1}{2}+.......+\frac{1}{2^{99}}\)
\(\Leftrightarrow2C-C=\left(1+\frac{1}{2}+.....+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+.....+\frac{1}{2^{100}}\right)\)
\(\Leftrightarrow C=1-\frac{1}{2^{100}}>1\)
\(\Rightarrow A>B\)
P = 1+1/2x2+1/3x3+...+1/2014x2014.
Mà: 1/2x2 bé hơn 1/1x2; 1/3x3 bé hơn 1/2x3; 1/2014x2014 bé hơn 1/2013x2014.
P = 1+1/2x2+1/3x3+...+1/2014x2014 bé hơn 1+1/1x2+1/2x3+...+1/2013x2014 = 1+1-1/2+1/2-1/3+...+1/2013-1/2014 = 1+1-1/2014 = 4027/2014; Q = 7/4.(Bạn tự tính nhá)
Suy ra P lớn hơn Q.