Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt B= \(\dfrac{2011}{1}+\dfrac{2010}{2}+.......+\dfrac{1}{2011}\)
Cộng 1 vào ta được:
B=(\(\dfrac{2012}{1}+\dfrac{2012}{2}+.......+\dfrac{2012}{2011}\)+\(\dfrac{2012}{2012}\)) -2012
-> B= 2012 (\(\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{2011}\)+\(\dfrac{1}{2012}\)) -2012+\(\dfrac{2012}{1}\)
Thay vào P ta được:
P=\(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{2012}}{2012\left(\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{2012}\right)}\)
-> P= \(\dfrac{1}{2012}\)
có chỗ nào chưa hiểu hỏi mình nha!
Bước 1: bạn cộng 1 vào từng hạng tử của mẫu:
\(\dfrac{2011}{1}+1\); \(\dfrac{2012}{2}+1\);....
Bước 2: Tính ra ta được:
\(\dfrac{2011}{1}+1\)=\(\dfrac{2012}{1}\); ....
Vì cộng một vào từng hạng tử và cộng thêm một vào cuối biểu thức (2012 hạng tử) nên phải từ đi 2012 để vẫn giữ nguyên giá trị biểu thức.
Bước 3: thấy trong ngoặc chung 2012 nên lấy 2012 ra và chuyển \(\dfrac{2012}{1}\)ra cuối cùng nên ta được biểu thức trên. Tính và được kết quả cuối cùng.
bước 4: thay vào P ta được: P=\(\dfrac{1}{2012}\)
vì giải thích trên máy nên hơi khó hiểu, bạn chịu khó nha~
B=\(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2012}}\)
=>3B=\(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2011}}\)
=>3B-B=2B=1-\(\dfrac{1}{3^{2012}}\)
=>B=\(\dfrac{1}{2}-\dfrac{1}{2.3^{20112}}\)<1/2
vậy........
\(B=1+\left(\frac{2007}{2}+1\right)+\left(\frac{2006}{3}+1\right)+...+\left(\frac{1}{2008}+1\right)=2009\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2008}+\frac{1}{2009}\right)\Rightarrow\frac{A}{B}=\frac{1}{2009}\)
1)\(\dfrac{A}{B}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}}{\dfrac{2008}{1}+\dfrac{2007}{2}+\dfrac{2006}{3}+...+\dfrac{2}{2007}+\dfrac{1}{2008}}\)
\(\dfrac{A}{B}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}}{2008+\dfrac{2007}{2}+\dfrac{2006}{3}+...+\dfrac{2}{2007}+\dfrac{1}{2008}}\)
\(\dfrac{A}{B}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}}{1+\left(\dfrac{2007}{2}+1\right)+\left(\dfrac{2006}{3}+1\right)+...+\left(\dfrac{2}{2007}+1\right)+\left(\dfrac{1}{2008}+1\right)}\)
\(\dfrac{A}{B}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}}{\dfrac{2009}{2009}+\dfrac{2009}{2}+\dfrac{2009}{3}+...+\dfrac{2009}{2007}+\dfrac{2009}{2008}}\)
\(\dfrac{A}{B}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}}{2009\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}\right)}\)
\(\dfrac{A}{B}=\dfrac{1}{2009}\)
2) \(A=\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+\dfrac{7}{3^2.4^2}+...+\dfrac{19}{9^2.10^2}\)
\(A=\dfrac{2^2-1^2}{1^2.2^2}+\dfrac{3^2-2^2}{2^2.3^2}+\dfrac{4^2-3^2}{3^2.4^2}+...+\dfrac{10^2-9^2}{9^2.10^2}\)
\(A=1-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+\dfrac{1}{3^2}-\dfrac{1}{4^2}+...+\dfrac{1}{9^2}-\dfrac{1}{10^2}\)
\(A=1-\dfrac{1}{10^2}< 1\left(đpcm\right)\)
\(A=\dfrac{2006}{2007}-\dfrac{2007}{2008}+\dfrac{2008}{2009}-\dfrac{2009}{2010}\)
\(A=\left(1-\dfrac{1}{2007}\right)-\left(1-\dfrac{1}{2008}\right)+\left(1-\dfrac{1}{2009}\right)-\left(1-\dfrac{1}{2010}\right)\)
\(A=1-\dfrac{1}{2007}-1+\dfrac{1}{2008}+1-\dfrac{1}{2009}-1+\dfrac{1}{2010}\)
\(A=\left(1-1\right)+\left(1-1\right)-\dfrac{1}{2007}+\dfrac{1}{2008}-\dfrac{1}{2009}+\dfrac{1}{2010}\)
\(A=\dfrac{1}{2007}+\dfrac{1}{2008}-\dfrac{1}{2009}+\dfrac{1}{2010}\)
\(B=-\dfrac{1}{2006.2007}-\dfrac{1}{2008.2009}\)
\(B=-\left(\dfrac{1}{2006}-\dfrac{1}{2007}\right)-\left(\dfrac{1}{2008}-\dfrac{1}{2009}\right)\)
\(B=-\dfrac{1}{2006}+\dfrac{1}{2007}-\dfrac{1}{2008}+\dfrac{1}{2009}\)
\(B=\dfrac{1}{2007}+\dfrac{1}{2009}-\dfrac{1}{2006}+\dfrac{1}{2008}\)
Dễ dàng thấy \(A>B\)
\(B=\dfrac{2008}{1}+\dfrac{2007}{2}+\dfrac{2006}{3}+...+\dfrac{2}{2007}+\dfrac{1}{2008}\)
\(B=1+\left(\dfrac{2007}{2}+1\right)+\left(\dfrac{2006}{3}+1\right)+...+\left(\dfrac{2}{2007}+1\right)+\left(\dfrac{1}{2008}+1\right)\)
\(B=\dfrac{2009}{2009}+\dfrac{2009}{2}+\dfrac{2009}{3}+..+\dfrac{2009}{2007}+\dfrac{2009}{2008}\)
\(B=2009\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}\right)\)
\(\dfrac{A}{B}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}}{2009\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}\right)}\)
\(\dfrac{A}{B}=\dfrac{1}{2009}\)
a) Ta có:
\(-\dfrac{24}{35}< -\dfrac{24}{30}< -\dfrac{19}{30}\)
\(\Rightarrow x< y\)
b) Ta có:
\(A=\dfrac{2006}{2007}-\dfrac{2007}{2008}+\dfrac{2008}{2009}-\dfrac{2009}{2010}\)
\(A=\left(1-\dfrac{1}{2007}\right)-\left(1-\dfrac{1}{2008}\right)+\left(1-\dfrac{1}{2009}\right)-\left(1-\dfrac{1}{2010}\right)\)
\(A=1-\dfrac{1}{2007}-1+\dfrac{1}{2008}+1-\dfrac{1}{2009}-1+\dfrac{1}{2010}\)
\(A=-\dfrac{1}{2007}+\dfrac{1}{2008}-\dfrac{1}{2009}+\dfrac{1}{2010}\)
Ta lại có:
\(B=-\dfrac{1}{2006.2007}-\dfrac{1}{2008.2009}\)
\(B=-\dfrac{1}{2006}+\dfrac{1}{2007}-\dfrac{1}{2008}+\dfrac{1}{2009}\)
=> Dễ dàng thấy A > B
Ta sẽ CM : \(\dfrac{a}{b}>\dfrac{a+m}{b+m}\left(a;b;m>0;a>b\right)\)
Thật vậy ; ta có :
\(a>b\\ \Rightarrow am>bm\\ \Rightarrow ab+am>ab+bm\\ \Rightarrow a\left(b+m\right)>b\left(a+m\right)\\ \Rightarrow\dfrac{a}{b}>\dfrac{a+m}{b+m}\left(đpcm\right)\)
Áp dụng BĐT trên ; có :
\(\dfrac{2^{2012}+1}{2^{2009}+1}>\dfrac{2^{2012}+1+3}{2^{2009}+1+3}\\ =\dfrac{2^{2012}+2^2}{2^{2009}+2^2}\\ =\dfrac{2^2\left(2^{2010}+1\right)}{2^2\left(2^{2007}+1\right)}\\ =\dfrac{2^{2010}+1}{2^{2007}+1}\)