Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{10^8+2}{10^8-1}=\frac{10^8-1+3}{10^8-1}=\frac{10^8-1}{10^8-1}+\frac{3}{10^8-1}=1+\frac{3}{10^8-1}\)
\(B=\frac{10^8}{10^8-3}=\frac{10^8-3+3}{10^8-3}=\frac{10^8-3}{10^8-3}+\frac{3}{10^8-3}=1+\frac{3}{10^8-3}\)
Vì 108-1 > 108-3
=>\(\frac{3}{10^8-1}< \frac{3}{10^8-3}\)
=>\(1+\frac{3}{10^8-1}< 1+\frac{3}{10^8-3}\Rightarrow A< B\)
Ta có: A = 108 + 2/ 108 - 1 = 3/108 - 1
B = 108 / 108 - 3 = 3 / 108 -3
Vì 3 / 108 - 1 < 3 / 108 -3 nên
Nên A< B
A=10^8+2/10^8-1=10^8-1+3/10^8-1
=10^8-1/10^8-1+3/10^8-1=1+3/10^8-1=1/3/...
B=10^8/10^8-3=10^8-3+3/10^8-3
=10^8-3/10^8-3+3/10^8-3=1+3/10^8-3=1/3/...
tu (1) va (2) =>1/3/10^8-1<1/3/10^8-3(vi phân so nao
co mau be hon thi phân so do lon hon nen 10^8-1>10^8-3)
Hay A<B
k mk nha
\(\frac{18^8+2}{10^8-1}=\frac{10^8+2}{10^8-3+2}\)
Mà 108 > 108 - 3
=> Vận dụng công thức \(\frac{a}{b}>1\Rightarrow\frac{a}{b}>\frac{a+m}{b+m}\)
=> \(\frac{10^8}{10^8-3}>\frac{10^8+2}{10^8-3+2}\)
=> \(\frac{10^8}{10^8-3}>\frac{10^8+2}{10^8-1}\)
a, Ta có: \(\frac{2001}{2002}=\frac{2002-1}{2002}=\frac{2002}{2002}-\frac{1}{2002}=1-\frac{1}{2002}\)
\(\frac{2000}{2001}=\frac{2001-1}{2001}=\frac{2001}{2001}-\frac{1}{2001}=1-\frac{1}{2001}\)
Vì \(\frac{1}{2002}< \frac{1}{2001}\Rightarrow1-\frac{1}{2002}>1-\frac{1}{2001}\Rightarrow\frac{2001}{2002}>\frac{2000}{2001}\)
b, Ta có: \(\left(\frac{1}{80}\right)^7>\left(\frac{1}{81}\right)^7=\left(\frac{1}{3^4}\right)^7=\left(\frac{1}{3}\right)^{28}=\frac{1}{3^{28}}\)
\(\left(\frac{1}{243}\right)^6=\left(\frac{1}{3^5}\right)^6=\left(\frac{1}{3^5}\right)^6=\frac{1}{3^{30}}\)
Vì \(\frac{1}{3^{28}}>\frac{1}{3^{30}}\Rightarrow\left(\frac{1}{81}\right)^7>\left(\frac{1}{243}\right)^6\Rightarrow\left(\frac{1}{80}\right)^7>\left(\frac{1}{243}\right)^6\)
c, Ta có: \(\left(\frac{3}{8}\right)^5=\frac{3^5}{\left(2^3\right)^5}=\frac{243}{2^{15}}>\frac{243}{3^{15}}>\frac{125}{3^{15}}=\frac{5^3}{\left(3^5\right)^3}=\frac{5^3}{243^3}=\left(\frac{5}{243}\right)^3\)
Vậy \(\left(\frac{3}{8}\right)^5>\left(\frac{5}{243}\right)^3\)
d, Ta có: \(\frac{2011}{2012}>\frac{2011}{2012+2013}\)
\(\frac{2012}{2013}>\frac{2012}{2012+2013}\)
\(\Rightarrow\frac{2011}{2012}+\frac{2012}{2013}>\frac{2011}{2012+2013}+\frac{2012}{2012+2013}=\frac{2011+2012}{2012+2013}\)
e, \(C=\frac{20^{10}+1}{20^{10}-1}=\frac{20^{10}-1+2}{20^{10}-1}=\frac{20^{10}-1}{20^{10}-1}+\frac{2}{2^{10}-1}=1+\frac{2}{2^{10}-1}\)
\(D=\frac{20^{10}-1}{20^{10}-3}=\frac{20^{10}-3+2}{20^{10}-3}=\frac{20^{10}-3}{20^{10}-3}+\frac{2}{2^{10}-3}=1+\frac{2}{2^{10}-3}\)
Vì \(\frac{2}{10^{10}-1}< \frac{2}{10^{10}-3}\Rightarrow1+\frac{2}{10^{10}-1}< 1+\frac{2}{10^{10}-3}\Rightarrow C< D\)
g, \(G=\frac{10^{100}+2}{10^{100}-1}=\frac{10^{100}-1+3}{10^{100}-1}=\frac{10^{100}-1}{10^{100}-1}+\frac{3}{10^{100}-1}=1+\frac{3}{10^{100}-1}\)
\(H=\frac{10^8}{10^8-3}=\frac{10^8-3+3}{10^8-3}=\frac{10^8-3}{10^8-3}+\frac{3}{10^8-3}=1+\frac{3}{10^8-3}\)
Vì \(\frac{3}{10^{100}-1}< \frac{3}{10^8-3}\Rightarrow1+\frac{3}{10^{100}-1}< 1+\frac{3}{10^8-3}\Rightarrow G< H\)
h, Vì E < 1 nên:
\(E=\frac{98^{99}+1}{98^{89}+1}< \frac{98^{99}+1+97}{98^{89}+1+97}=\frac{98^{99}+98}{98^{89}+98}=\frac{98\left(98^{98}+1\right)}{98\left(98^{88}+1\right)}=\frac{98^{98}+1}{98^{88}+1}=F\)
Vậy E = F
Ta có:\(A=\frac{10^8+2}{10^8-1}=\frac{10^8-1+3}{10^8-1}\)
\(\Rightarrow A=\frac{10^8-1}{10^8-1}+\frac{3}{10^8-1}\)
\(\Rightarrow A=1+\frac{3}{10^8-1}\)
\(B=\frac{10^8}{10^8-3}=\frac{10^8-3}{10^8-3}+\frac{3}{10^8-3}\)
\(\Rightarrow B=1+\frac{3}{10^8-3}\)
Vì \(\frac{3}{10^8-1}>\frac{3}{10^8-3}\Rightarrow A>B\)
\(\frac{10^8+2}{10^8-1}=\frac{10^8-1+3}{10^8-1}=1+\frac{3}{10^8-1}\)
\(\frac{10^8}{10^8-3}=\frac{10^8-3+3}{10^8-3}=1+\frac{3}{10^8-3}\)
Ta có: \(\frac{3}{10^8-1}< \frac{3}{10^8-3}\)
\(\Rightarrow1+\frac{3}{10^8-1}< 1+\frac{3}{10^8-3}\)
\(\Rightarrow\frac{10^8+2}{10^8-1}< \frac{10^8}{10^8-3}\)
Ta có:\(\frac{196}{197}+\frac{197}{198}=\left(1-\frac{1}{197}\right)+\left(1-\frac{1}{198}\right)=2-\frac{1}{197}-\frac{1}{198}>2-1=1\)
Mà \(\frac{196+197}{197+198}< \frac{197+198}{197+198}=1\)
\(\Rightarrow\frac{196}{197}+\frac{197}{198}>\frac{196+197}{197+198}\)
c) tương tự câu a
Tham khảo nhé~