K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2016

\(A=\frac{10^8+2}{10^8-1}=\frac{10^8-1+3}{10^8-1}=\frac{10^8-1}{10^8-1}+\frac{3}{10^8-1}=1+\frac{3}{10^8-1}\)

\(B=\frac{10^8}{10^8-3}=\frac{10^8-3+3}{10^8-3}=\frac{10^8-3}{10^8-3}+\frac{3}{10^8-3}=1+\frac{3}{10^8-3}\)

Vì 108-1 > 108-3

=>\(\frac{3}{10^8-1}< \frac{3}{10^8-3}\)

=>\(1+\frac{3}{10^8-1}< 1+\frac{3}{10^8-3}\Rightarrow A< B\)

18 tháng 5 2016

Ta có: A = 108 + 2/ 108 - 1 = 3/108 - 1                           

              B = 108 / 108 - 3 = 3 / 108 -3             

Vì 3 / 108 - 1 < 3 / 108 -3 nên           

Nên A< B

21 tháng 4 2016

A=10^8+2/10^8-1=10^8-1+3/10^8-1 
=10^8-1/10^8-1+3/10^8-1=1+3/10^8-1=1/3/... 
B=10^8/10^8-3=10^8-3+3/10^8-3 
=10^8-3/10^8-3+3/10^8-3=1+3/10^8-3=1/3/... 
tu (1) va (2) =>1/3/10^8-1<1/3/10^8-3(vi phân so nao 
co mau be hon thi phân so do lon hon nen 10^8-1>10^8-3) 
Hay A<B 

k mk nha

21 tháng 7 2015

\(\frac{18^8+2}{10^8-1}=\frac{10^8+2}{10^8-3+2}\)

Mà 108 > 108 - 3

=> Vận dụng công thức \(\frac{a}{b}>1\Rightarrow\frac{a}{b}>\frac{a+m}{b+m}\)

=> \(\frac{10^8}{10^8-3}>\frac{10^8+2}{10^8-3+2}\)

=> \(\frac{10^8}{10^8-3}>\frac{10^8+2}{10^8-1}\)

17 tháng 3 2017

he như thế nào zậy bạn k

7 tháng 5 2017

a, Ta có: \(\frac{2001}{2002}=\frac{2002-1}{2002}=\frac{2002}{2002}-\frac{1}{2002}=1-\frac{1}{2002}\)

\(\frac{2000}{2001}=\frac{2001-1}{2001}=\frac{2001}{2001}-\frac{1}{2001}=1-\frac{1}{2001}\)

Vì \(\frac{1}{2002}< \frac{1}{2001}\Rightarrow1-\frac{1}{2002}>1-\frac{1}{2001}\Rightarrow\frac{2001}{2002}>\frac{2000}{2001}\)

b, Ta có: \(\left(\frac{1}{80}\right)^7>\left(\frac{1}{81}\right)^7=\left(\frac{1}{3^4}\right)^7=\left(\frac{1}{3}\right)^{28}=\frac{1}{3^{28}}\)

\(\left(\frac{1}{243}\right)^6=\left(\frac{1}{3^5}\right)^6=\left(\frac{1}{3^5}\right)^6=\frac{1}{3^{30}}\)

Vì \(\frac{1}{3^{28}}>\frac{1}{3^{30}}\Rightarrow\left(\frac{1}{81}\right)^7>\left(\frac{1}{243}\right)^6\Rightarrow\left(\frac{1}{80}\right)^7>\left(\frac{1}{243}\right)^6\)

c, Ta có: \(\left(\frac{3}{8}\right)^5=\frac{3^5}{\left(2^3\right)^5}=\frac{243}{2^{15}}>\frac{243}{3^{15}}>\frac{125}{3^{15}}=\frac{5^3}{\left(3^5\right)^3}=\frac{5^3}{243^3}=\left(\frac{5}{243}\right)^3\)

Vậy \(\left(\frac{3}{8}\right)^5>\left(\frac{5}{243}\right)^3\)

d, Ta có: \(\frac{2011}{2012}>\frac{2011}{2012+2013}\)

\(\frac{2012}{2013}>\frac{2012}{2012+2013}\)

\(\Rightarrow\frac{2011}{2012}+\frac{2012}{2013}>\frac{2011}{2012+2013}+\frac{2012}{2012+2013}=\frac{2011+2012}{2012+2013}\)

e, \(C=\frac{20^{10}+1}{20^{10}-1}=\frac{20^{10}-1+2}{20^{10}-1}=\frac{20^{10}-1}{20^{10}-1}+\frac{2}{2^{10}-1}=1+\frac{2}{2^{10}-1}\)

\(D=\frac{20^{10}-1}{20^{10}-3}=\frac{20^{10}-3+2}{20^{10}-3}=\frac{20^{10}-3}{20^{10}-3}+\frac{2}{2^{10}-3}=1+\frac{2}{2^{10}-3}\)

Vì \(\frac{2}{10^{10}-1}< \frac{2}{10^{10}-3}\Rightarrow1+\frac{2}{10^{10}-1}< 1+\frac{2}{10^{10}-3}\Rightarrow C< D\)

g, \(G=\frac{10^{100}+2}{10^{100}-1}=\frac{10^{100}-1+3}{10^{100}-1}=\frac{10^{100}-1}{10^{100}-1}+\frac{3}{10^{100}-1}=1+\frac{3}{10^{100}-1}\)

\(H=\frac{10^8}{10^8-3}=\frac{10^8-3+3}{10^8-3}=\frac{10^8-3}{10^8-3}+\frac{3}{10^8-3}=1+\frac{3}{10^8-3}\)

Vì \(\frac{3}{10^{100}-1}< \frac{3}{10^8-3}\Rightarrow1+\frac{3}{10^{100}-1}< 1+\frac{3}{10^8-3}\Rightarrow G< H\)

h, Vì E < 1 nên:

\(E=\frac{98^{99}+1}{98^{89}+1}< \frac{98^{99}+1+97}{98^{89}+1+97}=\frac{98^{99}+98}{98^{89}+98}=\frac{98\left(98^{98}+1\right)}{98\left(98^{88}+1\right)}=\frac{98^{98}+1}{98^{88}+1}=F\)

Vậy E = F

13 tháng 3 2018

Ta có:\(A=\frac{10^8+2}{10^8-1}=\frac{10^8-1+3}{10^8-1}\)

\(\Rightarrow A=\frac{10^8-1}{10^8-1}+\frac{3}{10^8-1}\)

\(\Rightarrow A=1+\frac{3}{10^8-1}\)

\(B=\frac{10^8}{10^8-3}=\frac{10^8-3}{10^8-3}+\frac{3}{10^8-3}\)

\(\Rightarrow B=1+\frac{3}{10^8-3}\)

Vì \(\frac{3}{10^8-1}>\frac{3}{10^8-3}\Rightarrow A>B\)

6 tháng 8 2018

\(\frac{10^8+2}{10^8-1}=\frac{10^8-1+3}{10^8-1}=1+\frac{3}{10^8-1}\)

\(\frac{10^8}{10^8-3}=\frac{10^8-3+3}{10^8-3}=1+\frac{3}{10^8-3}\)

Ta có: \(\frac{3}{10^8-1}< \frac{3}{10^8-3}\)

\(\Rightarrow1+\frac{3}{10^8-1}< 1+\frac{3}{10^8-3}\)

\(\Rightarrow\frac{10^8+2}{10^8-1}< \frac{10^8}{10^8-3}\)

Ta có:\(\frac{196}{197}+\frac{197}{198}=\left(1-\frac{1}{197}\right)+\left(1-\frac{1}{198}\right)=2-\frac{1}{197}-\frac{1}{198}>2-1=1\)

Mà \(\frac{196+197}{197+198}< \frac{197+198}{197+198}=1\)

\(\Rightarrow\frac{196}{197}+\frac{197}{198}>\frac{196+197}{197+198}\)

c) tương tự câu a

Tham khảo nhé~