Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giả sử\(\sqrt{40+2}\le\sqrt{40}+\sqrt{2}\)
bình phương hai vế ta có:
\(42\le40+2+2\sqrt{80\Leftrightarrow\sqrt{80}\ge0}\)(luôn đúng)
\(\Rightarrow\)điều giả xư đúng
Bình 2 phương \(\sqrt{40+2}\) và \(\sqrt{40}+\sqrt{2}\) đc
\(\sqrt{\left(40+2\right)^2}=42\)
\(\left(\sqrt{40}+\sqrt{2}\right)^2=40+2+2\sqrt{40\cdot2}=42+2\sqrt{80}\)
Ta thấy:\(42+2\sqrt{80}>42\)
\(\Rightarrow\sqrt{40}+\sqrt{2}>\sqrt{40+2}\)
Ta có : \(\sqrt{40}>\sqrt{36}=6\)
\(\sqrt{2}>\sqrt{1}=1\)
\(\Rightarrow\sqrt{40}+\sqrt{2}>1+6=7=\sqrt{49}\)
Ta lại có : \(\sqrt{40+2}=\sqrt{42}\)
Vì \(\sqrt{49}>\sqrt{42}\)
\(\Rightarrow\sqrt{40}+\sqrt{2}>\sqrt{40+2}\)
Ta thấy:
\(\sqrt{40+2}< \sqrt{49}< 7\) (1)
\(\sqrt{40}>\sqrt{36}>6\) (2)
\(\sqrt{2}>\sqrt{1}>1\) (3)
Từ (2) và (3)
\(\sqrt{40}+\sqrt{2}>6+1>7\) (4)
Từ (1) và (4)
\(\Rightarrow\sqrt{40+2}< \sqrt{40}+\sqrt{2}\)
Vậy \(\sqrt{40+2}< \sqrt{40}+\sqrt{2}\)
A= ( \(\sqrt{1}\)+\(\sqrt{2}\)+\(\sqrt{3}\) ) + (\(\sqrt{20}\) + \(\sqrt{40}\) + \(\sqrt{60}\))
= (1+1,4+1,7)+(4,4+6,3+7,7)
= 4,1+18,4
=22,5
\(\sqrt{40+2}=\sqrt{42}< \sqrt{49}=7.\) (1)
\(\sqrt{40}+\sqrt{2}>\sqrt{36}+\sqrt{1}=6+1=7.\) (2)
Từ (1) và (2) suy ra \(\sqrt{40+2}< \sqrt{40}+\sqrt{2}.\)