Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ bình phương hai vế được (căn11)^2+(căn5)^2=11+5 4^2=16 vậy căn 11+căn 5=4
2/ tương tự (3 căn3 )^2=27 (căn19)^2-(căn 2)^2=19-2=17 vậy 3 căn 3 >căn 19-căn2
a) Ta có:
√2005 + √2003 > √2002 + √2000
<=> 1/(√2005 + √2003) < 1/(√2002 + √2000)
<=> 2/(√2005 + √2003) < 2/(√2002 + √2000)
<=> (2005 - 2003)/(√2005 + √2003) < (2002 - 2000)/(√2002 + √2000)
<=> √2005 - √2003 < √2002 - √2000
<=> √2005 + √2000 < √2002 + √2003
b) Tương tự câu a
√(a + 6) + √(a + 4) > √(a + 2) + √a
<=> 1/[√(a + 6) + √(a + 4)] < 1/[√(a + 2) + √a]
<=> 2/[√(a + 6) + √(a + 4)] < 2/[√(a + 2) + √a]
<=> [(a + 6) - (a + 4)/[√(a + 6) + √(a + 4)] < [(a + 2) - a]/[√(a + 2) + √a]
<=> √(a + 6) - √(a + 4) < √(a + 2) - √a
<=> √(a + 6) + √a < √(a + 4) + √(a + 2)
đúng ko ?
Ta có:\(\sqrt{17}+\sqrt{26}>\sqrt{16}+\sqrt{25}=4+5=9\)
Hay \(\sqrt{17}+\sqrt{26}>9\)
= \(\sqrt{17}+\sqrt{26}\)và 9
\(\sqrt{17}=4,123105626\)
\(\sqrt{26}=5,099019514\)
\(=4,123105626+5,099019514=9,222,25139\)
Vậy \(\sqrt{17}+\sqrt{26}>9\)
\(\frac{4}{5}\sqrt{3}+\frac{9}{13}\sqrt{2}=\frac{52\sqrt{3}+45\sqrt{2}}{65}=2,364711574\) \(< 2,4\)
vậy \(\frac{4}{5}\sqrt{3}+\frac{9}{13}\sqrt{2}< 2,4\)
Ta có: \(A=\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{120}+\sqrt{121}}\)
\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{121}-\sqrt{120}\)
\(=\sqrt{121}-1=11-1=10\)
Lại có đánh giá: \(\frac{1}{\sqrt{k}}=\frac{2}{2\sqrt{k}}>\frac{2}{\sqrt{k+1}+\sqrt{k}}\left(k>1\right)\)
\(\frac{1}{\sqrt{k}}>\frac{2\left(\sqrt{k+1}-\sqrt{k}\right)}{k+1-k}=2\left(\sqrt{k+1}-\sqrt{k}\right)\)
SUy ra \(B>1+2\left(\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{36}-\sqrt{35}\right)\)
\(=1+2\left(\sqrt{36}-\sqrt{2}\right)>1+2\left(6-1\right)=10=A\)
Nên B>A
\(\left(\sqrt{5}+\sqrt{7}\right)^2=12+2\sqrt{35}>12=\left(\sqrt{12}\right)^2\\ \Rightarrow\sqrt{5}+\sqrt{7}>\sqrt{12}\)
Lời giải:
$\sqrt{3}+5> \sqrt{1}+5=6$
$\sqrt{2}+\sqrt{11}< \sqrt{4}+\sqrt{16}=6$
$\Rightarrow \sqrt{3}+5> \sqrt{2}+\sqrt{11}$
Vì \(180< 441\)\(\Rightarrow\)\(\sqrt{180}< \sqrt{441}\)
\(\Leftrightarrow\)\(14+6\sqrt{5}< 14+21\)
\(\Leftrightarrow\)\(9+6\sqrt{5}+5< 35\)
\(\Leftrightarrow\)\(\left(\sqrt{9}+\sqrt{5}\right)^2< 35\)
\(\Leftrightarrow\)\(\sqrt{9}+\sqrt{5}< \sqrt{35}\)
Vậy \(\sqrt{9}+\sqrt{5}< \sqrt{35}\)