Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có :
\(A=\frac{10^{2019}+1}{10^{2018}+1}=\frac{10^{2018}.10+1}{10^{2018}+1}=\frac{10}{10^{2018}+1}\)
\(B=\frac{10^{2018}+1}{10^{2017}+1}=\frac{10^{2017}.10+1}{10^{2017}+1}=\frac{10}{10^{2017}+1}\)
Do \(10^{2017}+1< 10^{2018}+1\Rightarrow\frac{10}{10^{2017}+1}>\frac{10}{10^{2018}+1}\)
\(\Rightarrow A< B\)
Ta có :
A = \(\frac{10^{2017}+1}{10^{2018}+1}\)< 1 => A < \(\frac{10^{2017}+1+9}{10^{2018}+1+9}\)= \(\frac{10^{2017}+10}{10^{2018}+10}\)= \(\frac{10^{2016}+1}{10^{2017}+1}\)= B
Vậy A < B
A<B. lời giải thích khó viết lắm nên bạn tự tìm cách làm nhé
Ta có: \(\hept{\begin{cases}A=\frac{10^{2016}+1}{10^{2017}+1}\\B=\frac{10^{2017}+1}{10^{2018}+1}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}10A=\frac{10^{2017}+10}{10^{2017}+1}=\frac{10^{2017}+1+9}{10^{2017}+1}=1+\frac{9}{10^{2017}+1}\\10B=\frac{10^{2018}+10}{10^{2018}+1}=\frac{10^{2018}+1+9}{10^{2018}+1}=1+\frac{9}{10^{2018}+1}\end{cases}}\)
Vì \(\frac{9}{10^{1017}+1}>\frac{9}{10^{2018}+1}\)
nên \(10A>10B\Rightarrow A>B\)
\(A=\frac{10^{2016}+1}{10^{2017}+1}\Rightarrow10A=\frac{10\cdot(10^{2016}+1)}{10^{2017}+1}=\frac{10^{2017}+10}{10^{2017}+1}\)
\(A=\frac{10^{2017}+1+9}{10^{2017}+1}=\frac{10^{2017}+1}{10^{2017}+1}+\frac{9}{10^{2017}+1}=1+\frac{9}{10^{2017}+1}\)
Vì \(10^{2016}+1< 10^{2017}+1\)
\(\Rightarrow\frac{9}{10^{2016}+1}>\frac{9}{10^{2017}+1}\)
\(\Rightarrow\)\(1+\frac{9}{10^{2016}+1}>1+\frac{9}{10^{2017}+1}\)
....
a) Ta có : B = \(\frac{9^{19}+1}{9^{20}+1}\)< \(\frac{9^{19}+1+8}{9^{20}+1+8}\)= \(\frac{9^{19}+9}{9^{20}+9}\)= \(\frac{9\left(9^{18}+1\right)}{9\left(9^{19}+1\right)}\)= \(\frac{9^{18}+1}{9^{19}+1}\)= A
Vậy A > B
b) Ta có : B = \(\frac{10^{2018}-1}{10^{2019}-1}\)> \(\frac{10^{2018}-1-9}{10^{2019}-1-9}\)= \(\frac{10^{2018}-10}{10^{2019}-10}\)= \(\frac{10\left(10^{2017}-1\right)}{10\left(10^{2018}-1\right)}\)= \(\frac{10^{2017}-1}{10^{2018}-1}\)= A
Vậy A < B.
NHỚ K CHO MK VỚI NHÉ !!!!!!!!
Ta có : \(A=\frac{10^{2016}+1}{10^{2017}+1}\)
Suy ra \(10A=\frac{10^{2017}+10}{10^{2017}+1}\)
Suy ra \(10A=1+\frac{9}{10^{2017}+1}\)
Ta lại có : \(B=\frac{10^{2017}+1}{10^{2018}+1}\)
Suy ra : \(10B=\frac{10^{2018}+10}{10^{2018}+1}\)
Suy ra : \(10B=1+\frac{9}{10^{2018}+1}\)
Vì \(\frac{9}{10^{2017}+1}>\frac{9}{10^{2018}+1}\)
Nên \(1+\frac{9}{10^{2017}+1}>1+\frac{9}{10^{2018}+1}\)
Suy ra \(10A>10B\)
Suy ra \(A>B\)
Ta có:
10A=\(\frac{10\left(10^{2017}+1\right)}{10^{2018}+1}=\frac{10^{2018}+10}{10^{2018}+1}=\frac{10^{2018}+1}{10^{2018}+1}+\frac{9}{10^{2018}+1}=1+\frac{9}{10^{2018}+1}\)
10B=\(\frac{10\left(10^{2018}+1\right)}{10^{2019}+1}=\frac{10^{2019}+10}{10^{2019}+1}=\frac{10^{2019}+1}{10^{2019}+1}+\frac{9}{10^{2019}+1}=1+\frac{9}{10^{2019}+1}\)
do 1=1 và \(\frac{9}{10^{2018}+1}>\frac{9}{10^{2019}+1}\)
\(\Rightarrow\)A>B
Vậy A>B
chúc bạn học tốt!
Ta có: \(B=\frac{10^2\left(10^{2017}+1\right)}{10^2\left(10^{2016}+1\right)}=\frac{10^{2019}+1+99}{10^{2018}+1+99}\)
Do phân số \(A=\frac{10^{2019}+1}{10^{2018}+1}>1\).Áp dụng BĐT \(\frac{a}{b}>1\Rightarrow\frac{a}{b}>\frac{a+m}{b+m}\left(m>0\right)\).
Ta có: \(A=\frac{10^{2019}+1}{10^{2018}+1}>\frac{10^{2019}+1+99}{10^{2018}+1+99}=B\)
Vậy \(A>B\)
C/m BĐT phụ nè: \(\frac{a}{b}>1\Rightarrow\frac{a}{b}>\frac{a+m}{b+m}\left(m>0\right)\)
\(\Leftrightarrow a\left(b+m\right)>b\left(a+m\right)\)
\(\Leftrightarrow ab+am>ab+bm\)
\(\Leftrightarrow am>bm\Leftrightarrow a>b\) (đúng,do \(\frac{a}{b}>1\))