Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(10099+9999)100=10099x100+9999x100
(100100+99100)99=100100x99+99100x99
Vì100100x99+99100x99=10099x100+9999x100
=>M=N
Các bạn nhớ nha !!!
a) Ta có \(\sqrt{17}>\sqrt{16}=4\)
\(\sqrt{26}>\sqrt{25}=5\)
Khi đó \(\sqrt{17}+\sqrt{26}+1>4+5+1=10\) (1)
Mà \(\sqrt{99}< \sqrt{100}=10\) (2)
Từ (1) và (2) suy ra \(\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)
Vậy....
\(99^{100}:11=99.99^{99}:11=9^{99}.\left(99:11\right)=9.9^{99}\).
Vì vậy:
\(99^{100}:11=9.99^{99}=99^{99}+99^{99}+99^{99}+99^{99}+99^{99}+99^{99}+99^{99}+99^{99}+99^{99}\)\(>98^{99}+97^{99}+96^{99}+95^{99}+94^{99}+93^{99}+92^{99}+91^{11}\).
b, \(99^{20}=99^{10}.99^{10}\)
\(9999^{10}=99^{10}.101^{10}\)
Do \(99^{10}< 101^{10}\Rightarrow9^{20}< 9999^{10}\)
c) 99^20 = (99^2)^10 = 9801^10
Vì 9801<9999 => 9801^10<9999^10
hay 99^20<9999^10
a) Ta có 8^51>8^50
8^50 = (8^2)^25 = 64^25
Vì 48<64 => 48^25<64^25
hay 48^25<8^50
mà 8^50<8^51
=> 48^25<8^51
\(A=\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{98}{2^{98}}+\frac{99}{2^{99}}+\frac{100}{2^{100}}\)
\(2A=1+\frac{2}{2}+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{99}{2^{98}}+\frac{100}{2^{99}}\)
\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}-\frac{100}{2^{100}}\) (lấy 2A - A = A)
Đặt \(B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}+\frac{1}{2^{99}}\)
\(2B=2+1+\frac{1}{2}+...+\frac{1}{2^{97}}+\frac{1}{2^{98}}\)
\(B=2B-B=2-\frac{1}{2^{99}}\)
Do đó: \(A=2-\frac{1}{2^{99}}-\frac{100}{2^{100}}< 2\)
\(99^{100}=99^{100}\)
\(33^{200}=\left(33^2\right)^{100}=1089^{100}\)
vi \(1089>99\) nen \(1089^{100}>99^{100}\)
vay \(99^{100}< 33^{200}\)