Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: 4200 và 16150
Đổi: 16150 = (42)150 = 42.150 = 4300
Vì 4200 < 4300 nên 4200 < 16150
b) Ta có: 4200 và 3300
Đổi: 4200 = 42.100 = (42)100 = 16100 ; 3300 = 33.100 = (33)100 = 27100
Vì 16100 < 27100 nên 4200 < 3300
c) Ta có: 9400 và 81200
Đổi: 9400 = 92.200 = (92)200 = 81200
Vì 81200 = 81200 nên 9400 = 81200
a)\(8^{300}=\left(2^3\right)^{300}=2^{900}\)
Vì \(200< 900\Rightarrow2^{200}< 8^{300}\)
b)\(25^{200}=\left(5^2\right)^{200}=5^{400}\)
Vì \(400>300\Rightarrow25^{200}>5^{300}\)
c)\(64^7=\left(4^3\right)^7=4^{21}\)
Vì \(4^{21}=4^{21}\Rightarrow4^{21}=64^7\)
5200=(52)100=25100.
2500=(25)100=32100.
Vì 25 < 32 => 25100<32100=>5200<2500
a,320 và 274
320=(35)4=2434>274
Vậy 320>274
b,534 và 25x530
25x530=52x530=532<534
=>534>25x530.
c,224và 266
224=(24)6=166<266
=>224<266
d,1030và 450
1030=(103)10=100010
450=(45)10=102410
Vì 100010<102410nên 1030<450.
e,2300và 3200
2300=(23)100=8100
3200=(32)100=9100
Vì 8100<9100 nên 2300<3200
\(5^{200}=5^{2\times100}=\left(5^2\right)^{100}=25^{100}\)
\(2^{500}=2^{5\times100}=\left(2^5\right)^{100}=32^{100}\)
vì 32>25 nên 32100>25100 hay 2500 > 5200
\(3^{200}=3^{2\times100}=\left(3^2\right)^{100}=9^{100}\)
\(2^{300}=2^{3\times100}=\left(2^3\right)^{100}=8^{100}\)
vì 9>8 nên 9100>8100 hay 3200>2300
a) Ta có:
\(2^{300}=2^{3\cdot100}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=3^{2\cdot100}=\left(3^2\right)^{100}=9^{100}\)
Mà: \(8< 9\)
\(\Rightarrow8^{100}< 9^{100}\)
\(\Rightarrow2^{300}< 3^{200}\)
b) Ta có:
\(3^{500}=3^{5\cdot100}=\left(3^5\right)^{100}=243^{100}\)
\(7^{300}=7^{3\cdot100}=\left(7^3\right)^{100}=343^{100}\)
Mà: \(243< 343\)
\(\Rightarrow243^{100}< 343^{100}\)
\(\Rightarrow3^{500}< 7^{300}\)
c) Ta có:
\(8^5=\left(2^3\right)^5=2^{3\cdot5}=2^{15}=2\cdot2^{15}\)
\(3\cdot4^7=3\cdot\left(2^2\right)^7=3\cdot2^{2\cdot7}=3\cdot2^{14}\)
Mà: \(2< 3\)
\(\Rightarrow2\cdot2^{14}< 3\cdot2^{14}\)
\(\Rightarrow8^5< 3\cdot4^7\)
d) Ta có:
\(202^{303}=202^{3\cdot101}=\left(202^3\right)^{101}=8242408^{101}\)
\(303^{202}=303^{2\cdot101}=\left(303^2\right)^{101}=91809^{101}\)
Mà: \(8242408>91809\)
\(\Rightarrow8242408^{101}>91809^{101}\)
\(\Rightarrow202^{303}>303^{202}\)
\(9^{100}và3^{200}=3^{200}và3^{200}\\ \Rightarrow3^{200}=3^{200}\\ \Rightarrow9^{100}=3^{200}.\\ 5^{23}và125^3=5^{23}và5^9\\ \Rightarrow5^{23}>5^9\\ \Rightarrow5^{23}>5^3.\)
9¹⁰⁰ = (3²)¹⁰⁰ = 3²⁰⁰
Vậy 9¹⁰⁰ = 3²⁰⁰
------------
125³ = (5³)³ = 5⁹
Do 23 > 9 nên 5²³ > 5⁹
Vậy 5²³ > 125³
\(10^{200}=\left(5^2\right)^{200}=5^{400}\)
\(=>5^{400^{ }}=10^{200}\)
5^400 và 10^200
5^400=(5^2)^200=25^200>10^200 vậy 5^400>10^200