Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\left(2015^{2015}+2016^{2015}\right)^{2016}=\left(2015^{2015}+2016^{2015}\right)^{2015}.\left(2015^{2015}+2016^{2015}\right)\)
\(>\left(2015^{2015}+2016^{2015}\right)^{2015}.2016^{2015}=\left[\left(2015^{2015}+2016^{2015}\right)2016\right]^{2015}\)
\(>\left(2015^{2015}.2015+2016^{2015}.2016\right)^{2015}=\left(2015^{2016}+2016^{2016}\right)^{2015}\)
Vậy \(\left(2015^{2015}+2016^{2015}\right)^{2016}>\left(2015^{2016}+2016^{2016}\right)^{2015}\)
1. Ta sẽ chứng minh \(2015^{2016}>2016^{2015}\)
\(\Leftrightarrow2016^{2015}-2015^{2016}< 0\Leftrightarrow2016^{2016}-2016.2015^{2016}< 0\)
\(\Leftrightarrow2016.2016^{2016}-2015.2016^{2016}-2016.2015^{2016}< 0\)
\(\Leftrightarrow2016\left(2016^{2016}-2015^{2016}\right)< 2015.2016^{2016}\)
\(\Leftrightarrow2016\left(2016^{2015}+2016^{2014}.2015+...+2015^{2015}\right)< 2015.2016^{2016}\)
\(\Leftrightarrow2016^{2015}.2015+...+2016.2015^{2015}< 2014.2016^{2016}\)
\(\Leftrightarrow2016^{2014}.2015+2016^{2013}.2015^2+...+2015^{2015}< 2014.2016^{2015}\)
\(\Leftrightarrow2015^{2015}< \left(2016^{2015}-2015.2016^{2014}\right)+\left(2016^{2015}-2015^2.2016^{2013}\right)\)
\(+...+\left(2016^{2015}-2015^{2014}.2016\right)\)
\(\Leftrightarrow2015^{2015}< 2014.2016^{2014}+2013.2016^{2014}.2015+...+2016.2015^{2013}\)
Lại có \(2015^{2015}=2014.2015^{2014}+2015^{2014}< 2014.2016^{2014}+2015^{2014}\)
Mà \(2015^{2014}< 2013.2016^{2014}.2015\)
nên \(2015^{2014}< 2014.2016^{2014}+2013.2016^{2014}.2015+...+2016.2015^{2013}\)
Vậy \(2015^{2016}>2016^{2015}.\)
Tính từ máy tính casio fx 570 es plus hoặc fx 570 vn plus
Ta thu đc kết quả:
A>B
Bài giải
Ta có :
\(2^{255}=\left(2^{17}\right)^{15}\) \(>\left(2^{16}\right)^{15}=\left(2^8\right)^{30}=256^{30}\)
\(3^{150}=\left(3^{10}\right)^{15}=\left(3^5\right)^{30}=243^{30}\)
\(\text{Vì }256^{30}>243^{30}\text{ }\Rightarrow\text{ }2^{255}>3^{150}\)
\(2^{36}\)và \(3^{27}\)
\(2^{36}=2^{4.9}=\left(2^4\right)^9=16^9\)
\(3^{27}=3^{3.9}=\left(3^3\right)^9=27^9\)
Vì: \(16^9< 27^9\Rightarrow2^{36}< 3^{27}\)
\(2^{27}\)và \(3^{18}\)
\(2^{27}=2^{3.9}=\left(2^3\right)^9=8^9\)
\(3^{18}=3^{2.9}=\left(3^2\right)^9=9^9\)
Vì: \(8^9< 9^9\Rightarrow2^{27}< 3^{18}\)
Ta có: \(\left(2^2\right)^3=2^{2.3}=2^6\)
Vậy \(\left(2^2\right)^3=2^6\)
3^2n = (3^2)^n = 9^n
2^3n = (2^3)^n = 8^n
Vì 9^n > 8^n => 3^2n > 2^3n
7.2^13 < 8.2^13 = 2^3.2^13 = 2^3+13 = 2^16
=> 7.2^13 < 2^16
Tk mk nha
bạn Nguyễn Anh Quân bạn nên xen lại câu 7.213 và 216 đi bạn
Ta có: \(2^{300}\)=\(\left(2^3\right)^{100}\)=\(8^{100}\)
\(3^{200}\)=\(\left(3^2\right)^{100}\)=\(9^{100}\)
Vì 8 > 9 nên \(8^{100}\)<\(9^{100}\)
Vậy\(2^{300}\)<\(3^{200}\)
a/ 2225= (23)75 = 875
3150 = (32) 75 = 975
Vì 875 < 975 nên 2225 < 3150
b/ 3222 = (32)111 = 9111
2333 = (23)111 = 8111
vì 9111 > 8111 nên 3222 > 2333
2449=2.2448=2.(22)224=2.4224>3224