Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 13x = \(\frac{13^{17}+13}{13^{17}+1}=1+\frac{12}{13^{17}+1}\)
13y = \(\frac{13^{16}+13}{13^{16}+1}=1+\frac{12}{13^{16}+1}\)
Vì 1317 + 1 > 1316 + 1
=> \(\frac{1}{13^{17}+1}< \frac{1}{13^{16}+1}\)
=> \(\frac{12}{13^{17}+1}< \frac{12}{13^{16}+1}\)
=> \(1+\frac{12}{13^{17}+1}< 1+\frac{12}{13^{16}+1}\)
=> 13x < 13y
=> x < y
Vậy x < y
\(32^7=\left(2^5\right)^7=2^{35}\)
\(16^9=\left(2^4\right)^9=2^{36}\)
thế vào rồi so sánh
\(\left(-32\right)^9=-\left(2^5\right)^9=-\left(2^{45}\right)\)
\(\left(-16\right)^{13}=-\left(2^4\right)^{13}=-\left(2^{52}\right)\)
vì -2^45>-2^52hay -16^13>-32^9
\(a,2^3.32\ge2^n>16\)
\(2^3.2^5\ge2^n>2^4\)
\(2^8\ge2^n>2^4\)
\(\Rightarrow n\in\left\{8;7;6;5\right\}\)
\(b,25< 5^n< 625\)
\(5^2< 5^n< 5^4\)
\(\Rightarrow n=3\)
1)
a) \(\left(-48\right)^3:16^3\)
\(=\left(-48:16\right)^3\)
\(=\left(-3\right)^3\)
\(=-27.\)
b) \(\left(\frac{9}{10}\right)^6:\left(\frac{17}{-20}\right)^6\)
\(=\left(\frac{9}{10}:\frac{17}{-20}\right)^6\)
\(=\left(-\frac{18}{17}\right)^6\)
Chúc em học tốt!
\(\frac{-13^3}{\left(2^3\right)^3}:\frac{\left(-2^5\right)^4}{13^4}\)1.
a, (-48)3:163
= \(\left(\frac{-48}{16}\right)^3\)
= (-3)3
b,\(\left(\frac{9}{10}\right)^6\):\(\left(\frac{17}{-20}\right)^6\)
= \(\left(\frac{9}{10}:\frac{17}{-20}\right)^6\)
=\(\left(\frac{-18}{17}\right)^6\)
c, \(\left(\frac{-13}{8}\right)^3:\left(\frac{-32}{13}\right)^4\)
= \(\frac{-13^3}{\left(2^3\right)^3}:\frac{\left(-2^5\right)^4}{13^4}\)
= \(\frac{-13^3}{2^9}.\frac{-13^4}{2^{20}}\)
=\(\frac{13^7}{2^{29}}\)
\(a.\)
\(625^{17}=\left(5^4\right)^{17}=5^{68}\)
\(125^{19}=\left(5^3\right)^{19}=5^{57}\)
Vì \(5^{68}>5^{57}\Rightarrow625^{17}>125^{19}\)
ta có: 3213 = ( 25)13 = 265
1617 = (24)17 = 268
=> 265 < 268 => 3213 < 1617
32^13 và 16^17
32^13=(2^5)^13=2^65
16^17=(2^4)^17=2^72
Vì 2^65<2^72
Nên 32^13<16^17