Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
\(A=27^2.32^3=\left(3^3\right)^2.\left(2^5\right)^3=3^6.2^{15}\)
\(B=6^{16}=2^{16}.3^{16}\)
Từ \(\hept{\begin{cases}2^{15}< 2^{16}\\3^6< 3^{16}\end{cases}\Leftrightarrow2^{15}.3^6< 2^{16}.3^{16}\Leftrightarrow}A< B\)
Câu 2:
\(A=1+2+2^2+2^3+...+2^{2016}\)
<=>\(2A=2\left(1+2+2^2+2^3+...+2^{2016}\right)\)
<=>\(2A=2+2^2+2^3+2^4...+2^{2017}\)
<=>\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2017}\right)-\left(1+2+2^2+2^3+...+2^{2016}\right)\)
<=>\(A=2^{2017}-1< 2^{2017}=B\)
Vậy A<B
muốn viết dấu mũ như thế kia thì viết thế nào hả bạn ?
A=1+2+2^2+2^3+...+2^10
=>2A=2+2^2+2^3+2^4+...+2^11
=>2A-A=2+2^2+2^3+2^4+...+2^11-(1+2+2^2+2^3+...+2^10)
=>A=1+2^11>2^11
1,2 dễ ko làm
3,
S = 1 + 2 + 22 + 23 + ... + 29
2S = 2 + 22 + 23 + 24 + ... + 210
2S - S = ( 2 + 22 + 23 + 24 + ... + 210 ) - ( 1 + 2 + 22 + 23 + ... + 29 )
S = 210 - 1
Mà 5 . 28 = ( 1 + 22 ) . 28 = 28 + 210 > 210 > 210 - 1
Vậy S < 5 . 28
P = 1 + 3 + 32 + 33 + ... + 320
3P = 3 + 32 + 33 + 34 + ... + 321
3P - P = ( 3 + 32 + 33 + 34 + ... + 321 ) - ( 1 + 3 + 32 + 33 + ... + 320 )
2P = 321 - 1
P = ( 321 - 1 ) : 2 < 321
Vậy P < 321
a: \(1^3+2^3+3^3+4^3+5^3=225\)
\(\left(1+2+3+4+5\right)^2=15^2=225\)
Do đó: \(1^3+2^3+3^3+4^3+5^3=\left(1+2+3+4+5\right)^2\)
b: \(1^3+2^3+...+10^3=3025\)
\(\left(1+2+3+...+10\right)^2=55^2=3025\)
Do đó: \(1^3+2^3+...+10^3=\left(1+2+3+...+10\right)^2\)
(1+2+3+4)^2=10^2=100
1^3+2^3+3^3+4^3=1+8+27+64=100
=>(1+2+3+4)^2=1^3+2^3+3^3+4^3
ta có (1+2+3+4)2
=12+22+32+42
Vậy 12+22+3242 bé hơn 13+23+33+43
bn có tể tính cách
13+23+33+43=(1+2+3+4)3
vậy (1+2+3+4)2 bé hơn (1+2+3+4)3
Dựa vào số mũ nha bn
a) ta có: 12+22+32 = 1+4+9 = 14
62 = 36 > 14
=>...
b) ta có: 23+53 = 8 + 125 = 133
33+43 = 27 + 64 = 91 < 133
=>...