Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2015^2016+2015^2015=2015^2015 .(2015+1) =2015^2015 .2016 < 2016^2015 . 2016 =2016^2016
Vậy 2015^2016+2015^2015< 2016^2016
b)5^299 < 5^300 = (5^2)^150 =25^150 < 27^150 =(3^3)^150 = 3^450 <3^501
Vậy 5^299 < 3^501
Ta có : \(\frac{n-1}{n!}=\frac{1}{\left(n-1\right)!}-\frac{1}{n!}\) với n là số tự nhiên khác 0
Khi đó : \(A=\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{2015}{2016!}\)
\(=\frac{1}{1!}-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+...+\frac{1}{2015!}-\frac{1}{2016!}\)
\(=1-\frac{1}{2016!}< 1\)
Lại có B > 1
=> A < B
a) 528 = (52)14 = 2514
Vì 2514 < 2614 nên 528 < 2614
b) 530 = (53)10 = 12510
Vì 12510 > 12410 nên 530 > 12410
c) 421 = (43)7 = 647
Vì 647 = 647 nên 421 = 647
Mong mn ủng hộ mk
\(a,5^{28}=\left(5^2\right)^{14}=25^{14}< \)\(26^{14}\)
\(\Rightarrow5^{28}< 26^{14}\)
\(b,5^{30}=\left(5^3\right)^{10}=125^{10}>124^{10}\)
\(\Rightarrow5^{30}>124^{10}\)
\(c,4^{21}=\left(4^3\right)^7=64^7\)
\(\Rightarrow4^{21}=64^7\)
Trước tiên để tính diện tích hình thang chúng ta có công thức Chiều cao nhân với trung bình cộng hai cạnh đáy.
cach tinh dien h hinh thang vuong can khi biet do dai 4 canh cong thuc tinh 2
S = h * (a+b)1/2
Trong đó
a: Cạnh đáy 1
b: Cạnh đáy 2
h: Chiều cao hạ từ cạnh đấy a xuống b hoặc ngược lại(khoảng cách giữa 2 cạnh đáy)
Ví dụ: giả sử ta có hình thang ABCD với các cạnh AB = 8, cạnh đáy CD = 13, chiều cao giữa 2 cạnh đáy là 7 thì chúng ta sẽ có phép tính diện tích hình thang là:
S(ABCD) = 7 * (8+13)/2 = 73.5
cach tinh dien h hinh thang vuong can khi biet do dai 4 canh cong thuc tinh 3
Tương tự với trường hợp hình thang vuông có chiều cao AC = 8, cạnh AB = 10.9, cạnh CD = 13, chúng ta cũng tính như sau:
S(ABCD) = AC * (AB + CD)/2 = 8 * (10.9 + 13)/2 = 95.6
\(1.\)
a, \(27^{265}\)và \(81^{199}\)
\(27^{265}=\left(3^3\right)^{265}=3^{795}\)
\(81^{199}=\left(3^4\right)^{199}=3^{796}\)
\(\Rightarrow3^{795}< 3^{796}hay27^{265}< 81^{199}\)
b, \(1024^{15}=\left(2^{10}\right)^{15}=2^{150}\)
\(128^{21}=\left(2^7\right)^{21}=2^{147}\)
\(2^{150}>2^{147}.hay.1024^{15}>128^{21}\)