Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{10^8+1}{10^9+1}=\frac{1}{10}\left(\frac{10^9+10}{10^9+1}\right)=\frac{1}{10}\left(1+\frac{9}{10^9+1}\right)\)
\(B=\frac{10^9+1}{10^{10}+1}=\frac{1}{10}\left(\frac{10^{10}+10}{10^{10}+1}\right)=\frac{1}{10}\left(1+\frac{9}{10^{10}+1}\right)\)
\(\frac{9}{10^9+1}>\frac{9}{10^{10}+1}\)
\(\Rightarrow A>B\)
Đặt \(M=\frac{10^8+1}{10^9+1}\) và \(N=\frac{10^9+1}{10^{10}+1}\)
Có : \(M=\frac{10^8+1}{10^9+1}\)
\(\Rightarrow10M=\frac{10^9+10}{10^9+1}=\frac{10^9+1+9}{10^9+1}=1+\frac{9}{10^9+1}\)
Lại có : \(N=\frac{10^9+1}{10^{10}+1}\)
\(\Rightarrow10N=\frac{10^{10}+10}{10^{10}+1}=\frac{10^{10}+1+9}{10^{10}+1}=1+\frac{9}{10^{10}+1}\)
Vì \(\frac{9}{10^9+1}>\frac{9}{10^{10}+1}\) nên \(1+\frac{9}{10^9+1}>1+\frac{9}{10^{10}+1}\)
\(\Rightarrow10M>10N\Rightarrow M>N\)
Vậy M > N.
Có : 200410 + 20049 = 20049 ( 2004 + 1 ) = 20049 . 2005
Lại có : 200510 = 20059 . 2005
Vì 20049 < 2009
=> 200410 + 20049 < 200510
2004^10+2004^9= 2004^9(2004+1)=2004^9.2005
2005^10=2005^9.2005
từ đó ta có 2004^10+2004^9 < 2005^10
1) Ta có :\(82^{10}>81^{10}=\left(9^2\right)^{10}=9^{20}>9^{13}\)
===>\(82^{10}>9^{13}\)