K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2019

a) Có vẻ đề o đúng lắm . Theo mình o phải là 11/11 mà 1/11

Ta có \(\frac{1}{11}>\frac{1}{12}>\frac{1}{13}>...>\frac{1}{19}>\frac{1}{20}\)

\(\Rightarrow\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{19}+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}=\frac{10}{20}=\frac{1}{2}\)

hay \(S>\frac{1}{2}\)

b)Ta có 1998 x 1999 + 3997=(2000-2) x 1999 +3997 = 2000 x 1999 - 2 x 1999 +3997 = 1999 x 2000 -3998 +3997 =1999 x 2000 -1

< 1999 x 2000 +2 

=> 1999 x 2000 +2 / 1998 x 1999 +3997 > 1 hay M>1

13 tháng 7 2019

Thanks you . Mình sẽ kết bạn với cậu nhé

3 tháng 3 2018

A=1011-1/1012-1<1

=>A=1011-1/1012-1<1011+1.10/1012+1.10

                             =1011+10/1012+10

                             =10(1010+1)/10(1011+1)

                             =1010+1/1011+1=B

=>A<B

2 tháng 6 2017

 Ta có :

                 S = 1/11+1/12+1/13+...+1/19+1/20 nên S có 10 số hạng 
Và 1/2 = 10/20 
Mà 1/11 > 1/12 > 1/13 > 1/14 > 1/15 > 1/16 > 1/17 > 1/18 > 1/19 > 1/20 
Nên 1/11+1/12+1/13+...+1/19+1/20 > 1/20x10 
=> 1/11+1/12+1/13+...+1/19+1/20 > 10/20 
=> 1/11+1/12+1/13+...+1/19+1/20 > 1/2 
                Vậy S > 1/2

2 tháng 6 2017

k minh nha

10 tháng 8 2017

\(S=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}=\frac{10}{20}=\frac{1}{2}\)

9 tháng 7 2016

Đặt \(A=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\)

\(A>\frac{3}{14}+\frac{3}{14}+\frac{3}{14}+\frac{3}{14}+\frac{3}{14}=\frac{3}{14}.5=\frac{15}{14}>1\)

\(A< \frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}=\frac{3}{10}.5=\frac{15}{10}=\frac{3}{2}< 2\)

Vậy \(1< A< 2\)

9 tháng 7 2016
  • Ta có:\(\frac{3}{10}>\frac{3}{15};\frac{3}{11}>\frac{3}{15};\frac{3}{12}>\frac{3}{15};\frac{3}{13}>\frac{3}{15};\frac{3}{14}>\frac{3}{15}\)

=>\(\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}>\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}\)

mà \(\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}=\frac{15}{15}=1\)

=>\(\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}>1\)(1)

  • Ta có:\(\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}< \frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}\)

mà \(\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}=\frac{15}{10}< \frac{20}{10}=2\)

=>\(\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}< 2\)(2)

Từ (1) và (2) => \(1< \frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}< 2\)

2 tháng 4 2015

Ta có các phân số 1/11 ; 1/12 ; 1/13 ; 1/14 ; 1/15 ; 1/16 ; 1/17 ; 1/18 ; 1/19 đều lớn hơn 1/20

Do đó : 1/11 + 1/12 + 1/13 + 1/14 + 1/15 + 1/16 + 1/17 + 1/18 + 1/19 + 1/20 > 1/20 + 1/20 + ;...+ 1/20 ( có 10 phân số 1/20 )

1/11 + 1/12 + 1/13 + 1/14 + 1/15 + 1 /16 + 1/17 + 1/18 + 1/19 + 1/20 > 10/20

1/11 + 1/12 + 1/13 + 1/14 + 1/15 + 1 /16 + 1/17 + 1/18 + 1/19 + 1/20 > 1/2

Vậy : S > 1/2

S>\(\frac{1}{2}\)