Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
papa ko làm thì thui z 2`
a) Đặt A = 1 + 2 + 22 + 23 ...+299 + 2100
2A = 2 + 22 + 23 + 24 + ... + 2100 + 2101
2A - A = 2 + 22 + 23 + 24 + ... + 2100 + 2101 - 1 + 2 + 22 + 23 ...+299 + 2100
A = 21001 - 1 < 2101
Vậy A < 2101
câu b tính trong ngoặc sau đó tính x như thường
Ta có :
P = 1 + 3 + 32 + ... + 399 + 3100
3P = 3 + 32 + 33 + ... + 3100 + 3101
3P - P = ( 3 + 32 + 33 + ... + 3100 + 3101 ) - ( 1 + 3 + 32 + ... + 3100 + 3101 )
2P = 3101 - 1
P = \(\frac{3^{101}-1}{2}=\frac{3^{101}}{2}-\frac{1}{2}< \frac{3^{101}}{2}\)
Vậy P < \(\frac{3^{101}}{2}\)
Ta có: \(A=\frac{2017^{99}+1}{2017^{100}+1}\Rightarrow2017A=\frac{2017^{100}+2017}{2017^{100}+1}=1+\frac{2016}{2017^{100}+1}\)
\(B=\frac{2017^{100}+1}{2017^{101}+1}\Rightarrow2017B=\frac{2017^{101}+2017}{2017^{101}+1}=1+\frac{2016}{2017^{101}+1}\)
\(\frac{2016}{2017^{100}+1}>\frac{2016}{2017^{101}+1}\Rightarrow1+\frac{2016}{2017^{100}+1}>1+\frac{2016}{2017^{101}+1}\)
\(\Rightarrow2017A>2017B\Rightarrow A>B\)
Vậy...
Đặt \(A=\frac{2017^{99}+1}{2017^{100}+1}\)nên \(2017A=\frac{2017^{100}+2017}{2017^{100}+1}=\frac{2017^{100}+1+2016}{2017^{100}+1}=1+\frac{2016}{2017^{100}+1}\)
\(B=\frac{2017^{100}+1}{2017^{101}+1}\)nên \(2017B=\frac{2017^{101}+2017}{2017^{101}+1}=\frac{2017^{101}+1+2016}{2017^{101}+1}=1+\frac{2016}{2017^{101}+1}\)
Vì \(1=1;\frac{2016}{2017^{100}+1}>\frac{2016}{2017^{101}+1}\Rightarrow1+\frac{2016}{2017^{100}+1}>1+\frac{2016}{2017^{101}+1}\)
Hay \(2017A>2017B\)nên \(A>B\)
Vây \(\frac{2017^{99}+1}{2017^{1001}+1}>\frac{2017^{100}+1}{2017^{101}+1}\)
Ta có
100 x 100 = 100 x (99 + 1) = 100 x 99 + 100
99 x 101 = 99 x (100 + 1) = 99 x 100 + 99
Vì 100 > 99 nên 100 x 100 > 99 x 101