Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với p = 3 -> p²+2 = 11 là số nguyên tố. Nên p=3 là 1 nghiệm.
Với các số nguyên tố khác 3 thì chúng đều không chia hết cho 3. Nên chúng có dạng p = 3k+1 hoặc p=3k+2. Với k là 1 số nguyên không âm.
Mặt khác ta có: p² = 9k²+6k+1 đồng dư với 1 mod 3. Hoặc p² = 9k² + 12k + 4 = 9k² + 12k + 3 +1 đồng dư với 1 mod 3. (*)
Do đó p²+2 sẽ đồng dư với 1 + 2 = 3 mod 3. Tức p²+2 chia hết cho 3. Mà p²+2 là số nguyên tố nên p²+2 chỉ có thể bằng 3 -> p = 1 (vô lý).
Vậy p = 3 là nghiệm duy nhất của bài toán.
Bạn tham khảo bài của Đinh Tuấn Việt ở Câu hỏi của Tài Nguyễn Tuấn - Chuyên mục hỏi đáp - Giúp tôi giải toán. - Học toán với OnlineMath
\(m;n\in N\Rightarrow m;n\ge0\)
\(p\) là số nguyên tố
Thỏa mãn \(\frac{p}{m-1}=\frac{m+n}{p}\Leftrightarrow p^2=\left(m-1\right)\left(m+n\right)\)
Do \(\left(m-1\right)\) và \(\left(m+n\right)\) là các ước nguyên dương của \(p^2\)
Lưu ý: \(m-1< m+n\left(1\right)\)
Vì \(p\) là số nguyên tố nên \(p^2\)chỉ có các ước nguyên dương là \(1,p\) và \(p^2(2)\)
Từ \((1)\) và \(\left(2\right)\) ta có \(m-1=1\) và \(m+n=p^2\)
\(\Rightarrow m=2\) và\(2+n=p^2\)
Vậy\(A=p^2-n=2\)
Ta thấy các số nguyên tố đều là số lẽ trừ 2
Với p là số lẽ =>\(p^2+1\text{ là số chẵn ; }p^4+1\text{ là số chẵn}\)
=>\(p^2+1;p^4+1\text{ không phải là số nguyên tố}\)
=>p không phải là số lẽ =>p=2
\(_{\frac{p}{m-1}=\frac{m+n}{p}\Rightarrow p^2=\left(m-1\right)\times\left(m+n\right)\Rightarrow p^2=m^2+m\times n-m-n\Rightarrow p^2=m^2+m\times n-m-2\times n}\)
Vậy A\(=p^2-n=m^2+m\times n-m-2\times n\)
Lời giải:
-Nếu $p$ không chia hết cho $3\Rightarrow p\geq 2$
Ta biết rằng mọi số chính phương không chia hết cho $3$ thì chia $3$ dư $1$. Do đó $p^2+2\equiv 0\pmod 3$. Suy ra để $p^2+2$ là số nguyên tố thì $p^2+2=3\rightarrow p=1$ (vô lý)
Vậy $p$ thỏa mãn đề bài phải chia hết cho $3$, hay $p=3$. Thử vào $p^2+2=11,p^3+2=29\in\mathbb{P}$ nên ta có đpcm
Vì p+10 là SNT nên p không chia hết cho 2
Xét p=3 thì p+10=3+10=13 (thỏa)
p+14=3+14=17( thỏa)
Xét p>3 thì p có dạng 3k+1;3k+2(kEN*)
Nếu p có dạng 3k+1 thì p+14=3k+1+14=3k+15=3*(k+5)>3(hợp số )
Nếu p có dạng 3k+2 thì p+10=3k+2+10=3k+12=3*(k+4)>3(hợp số )
Vậy p=3
3)a)Gọi d là ƯCLN(12n+1;30n+2)
Ta có 12n+1 chia hết cho d nên 5*(12n+1) chia hết cho d
30n+2 chia hết cho d nên 2*(30n+2) chia hết cho d
Nên [5*(12n+1)-2*(30n+2)] chia hết cho d
hay (60n+5)-(60n+4) chia hết cho d
hay 1 chia hết cho d
nên d=1
Vì ƯCLN(12n+1;30n+2)=1 nên phân số\(\frac{12n+1}{30n+2}\)là phân số tối giản
Vì x là số nguyên âm=> x<0=>x2015<0( luỹ thừa với số mũ lẻ) (1)
Mà (-2)2014>0( luỹ thừa với số mũ chẵn) (2)
từ (1);(2)=> x2015 # (-2)2014
=> ko có số nguyên âm x nào thoả mãn đề bài
3/x+y/3=5/6
<=>3/x=5/6-y/3
<=>3/x=5/6-2y/6=(5-2y)/6
<=>x.(5-2y)=3.6=18
sau đó lập bảng , tìm x,y
Với P>3 thì P có dạng 3n+1 hoặc 3n+2
*P=3n+1
=>P2+1994=(3n+1)2+1994=9n2+6n+1995=3.(3n2+2n+665) chia hết cho 3
=>P2+1994 không phải số nguyên tố
*P=3n+2
=>P2+1994=(3n+2)2+1994=9n2+12n+1998=3.(3n2+4n+666) chia hết cho 3
=>P2+1994 không phải là số nguyên tố
Suy ra: P không thể lớn hơn 3 =>P có thể là 2 hoặc 3
*Với P=2
=>P2+1994=1998 không phải là số nguyên tố
*Với P=3
=>P2+1998=2007 là số nguyên tô
Vậy P=3
Với P>3 thì P có dạng 3n+1 hoặc 3n+2
*P=3n+1
=>P2+1994=(3n+1)2+1994=9n2+6n+1995=3.(3n2+2n+665) chia hết cho 3
=>P2+1994 không phải số nguyên tố
*P=3n+2
=>P2+1994=(3n+2)2+1994=9n2+12n+1998=3.(3n2+4n+666) chia hết cho 3
=>P2+1994 không phải là số nguyên tố
Suy ra: P không thể lớn hơn 3 =>P có thể là 2 hoặc 3
*Với P=2
=>P2+1994=1998 không phải là số nguyên tố
*Với P=3
=>P2+1998=2007 là số nguyên tô
Vậy P=3