Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\left(x+2y-3\right)^{2016}\ge0;\left|2x+3y-5\right|\ge0\forall x;y\)
\(\Rightarrow\left(x+2y-3\right)^{2016}+\left|2x+3y-5\right|\ge0\forall x;y\)
Mà \(\left(x+2y-3\right)^{2016}+\left|2x+3y-5\right|=0\) \(\Leftrightarrow\left(x+2y-3\right)^{2016}=0\) ; \(\left|2x+3y-5\right|=0\)
\(\Rightarrow x+2y-3=0;2x+3y-5=0\)
\(\Leftrightarrow x+2y=3;2x+3y=5\)
\(\Rightarrow x=3-2y\)
\(\Rightarrow2\left(3-2y\right)+3y=5\Leftrightarrow6-4y+3y=5\Leftrightarrow6-y=5\Rightarrow y=1\)
\(\Rightarrow x=3-2.1=1\)
Vậy \(x=1;y=1\)
\(B=\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right).....\left(1+\frac{1}{9}\right)\left(1+\frac{1}{10}\right)\)
\(=\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot.....\cdot\frac{10}{9}\cdot\frac{11}{10}\)
\(=\frac{3.4.5.....10.11}{2.3.4....10}=\frac{11}{2}\)
Viết các phân số dưới dạng tối giản:
- So sánh các số hữu tỉ dương với nhau:
Ta có :
Vì 39 < 40 và 130 > 0 nên
- Tương tự So sánh các số hữu tỉ âm với nhau
Vậy:
\(xy=\frac{1}{t}.txy\le\frac{t^2x^2+y^2}{2t}=\frac{\left(3+\sqrt{5}\right)x^2+y^2}{1+\sqrt{5}}\)\(t^2=\frac{3+\sqrt{5}}{2}\)
\(\frac{2\left(1+\sqrt{5}\right)\left(x^2+y^2+z^2+1\right)}{\left(3+\sqrt{5}\right)\left(2x^2+y^2+z^2+1\right)}\)
\(K=\frac{x^2+y^2+z^2+1}{xy+yz+z}=\frac{\left(1+\sqrt{5}\right)\left(x^2+y^2+z^2+1\right)}{2.\frac{1+\sqrt{5}}{2}x.y+\left(1+\sqrt{5}\right)yz+2.\frac{1+\sqrt{5}}{2}.z}\)
\(\ge\frac{\left(1+\sqrt{5}\right)\left(x^2+y^2+z^2+1\right)}{\frac{3+\sqrt{5}}{2}x^2+y^2+\frac{1+\sqrt{5}}{2}\left(y^2+z^2\right)+z^2+\frac{3+\sqrt{5}}{2}}=\frac{1+\sqrt{5}}{\frac{3+\sqrt{5}}{2}}=\sqrt{5}-1=k\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x=1\\y=\frac{1+\sqrt{5}}{2}\\z=\frac{1+\sqrt{5}}{2}\end{cases}}\)
\(M=\frac{x^2+y^2+z^2+1}{xy+y+z}=\frac{\left(\sqrt{5}-1\right)\left(x^2+y^2+z^2+1\right)}{2.x.\frac{\sqrt{5}-1}{2}y+\left(\sqrt{5}-1\right)y+2.\frac{\sqrt{5}-1}{2}.z}\)
\(\ge\frac{\left(\sqrt{5}-1\right)\left(x^2+y^2+z^2+1\right)}{x^2+\frac{3-\sqrt{5}}{2}y^2+\frac{\sqrt{5}-1}{2}\left(y^2+1\right)+\frac{3-\sqrt{5}}{2}+z^2}=\sqrt{5}-1=m\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x=\frac{-1+\sqrt{5}}{2}\\y=1\\z=\frac{-1+\sqrt{5}}{2}\end{cases}}\)
\(km+k+m=4\)
\(0,\left(3\right)=0,\left(1\right).3=\frac{1}{9}.3=\frac{1}{3}\)
\(0,\left(07\right)=0,\left(01\right).7=\frac{1}{99}.7=\frac{7}{99}\)
#
có \(1=\frac{1}{1}=\frac{1}{2^0}\left(2^0=1\right)\)
\(\frac{1}{2}=\frac{1}{2^1}\)
\(\frac{1}{4}=\frac{1}{2^2}\)
.............
\(\frac{1}{1024}=\frac{1}{2^{10}}\)
Vậy số các số hạng của dãy trên là
(10-0):1+1=11
Vậy dãy trên có 11 số hạng
a)
\(\frac{16}{2^x}=2\)
\(\Rightarrow2^{x+1}=16\)
\(\Rightarrow2^{x+1}=2^4\)
\(\Rightarrow x+1=4\)
\(\Rightarrow x=3\)
b)
\(\frac{\left(-3\right)^x}{81}=-27\)
\(\Rightarrow\left(-3\right)^x=-\left(3^3.3^4\right)\)
\(\Rightarrow-3^x=-3^7\)
=> x=7
c)
\(8^n:2^n=4\)
\(\Rightarrow2^{3n}:2^n=4\)
\(\Rightarrow2^{3n-n}=4\)
\(\Rightarrow2^{2n}=2^2\)
=>2n=2
=>n=1
a)\(\frac{16}{2^n}=2\)
=>16:2n=2
=>2n=16:2
=>2n=8
b)ko nhớ cách làm
c)8n:2n=4
=>(23)n:2n=22
=>23n:2n=22
=>23n-n=22
=>22n=22
=>2n=2
=>n=1
dc rùi chứ
\(m-1⋮2m-1\)
\(\Leftrightarrow2\left(m-1\right)⋮2m-1\)
\(\Leftrightarrow2m-2⋮2m-1\)
\(\Leftrightarrow\left(2m-1\right)-1⋮2m-1\)
\(\Rightarrow1⋮2m-1\) \(\Rightarrow2m-1\inƯ\)(1) = {\(-1;1\)}
Với \(2m-1=-1\Rightarrow2m=0\Rightarrow n=0\) (TM)
Với \(2m-1=1\Leftrightarrow2m=2\Rightarrow m=1\)(TM)
Vậy \(m=\left[0;1\right]\) thì \(m-1⋮2m-1\)