Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a
=>(n+2)=5 :.n+2
=>5:. n+2
=>n+2 E (1,5)
th1
N+2=1
th2 tựlamf
ta có : \(\log_ab=\dfrac{3}{2}\Leftrightarrow a^{\dfrac{3}{2}}=b\Leftrightarrow\left(c+9\right)^{\dfrac{3}{2}}=b\)
ta có : \(\log_cd=\dfrac{5}{4}\Leftrightarrow c^{\dfrac{5}{4}}=d\)
\(\Rightarrow b-d=\left(c+9\right)^{\dfrac{3}{2}}-c^{\dfrac{5}{4}}\)
a) . = = = = = 9.
b) : = = = = = = 8.
c) + = + = + = + = + = 40.
d) - = - = - = - = 121.
a) \(9^{\dfrac{2}{5}}.27^{\dfrac{2}{5}}=\left(9.27\right)^{\dfrac{2}{5}}=\left(3^2.3^3\right)^{\dfrac{2}{5}}=3^{5.\dfrac{2}{5}}=3^2=9\)
b) \(=\left(\dfrac{144}{9}\right)^{\dfrac{3}{4}}=\left(\dfrac{12}{3}\right)^{2.\dfrac{3}{4}}=4^{\dfrac{3}{2}}=2^{2.\dfrac{3}{2}}=2^3=8\)
c) \(=\left(\dfrac{1}{2}\right)^{4.\left(-0,75\right)}+\left(\dfrac{1}{4}\right)^{-\dfrac{5}{2}}\)
\(=\left(\dfrac{1}{2}\right)^{-3}+\left(\dfrac{1}{2}\right)^{-5}\)
\(=2^3+2^5=40\)
d) \(=\left(0,2\right)^{2.\left(-1.5\right)}-\left(0,5\right)^{3.\dfrac{-2}{3}}\)
\(=\left(\dfrac{1}{5}\right)^{-3}-\left(\dfrac{1}{2}\right)^{-2}\)
\(=5^3-2^2=121\)
Lời giải:
Đặt \(\log_yx=a,\log_xy=b\). Khi đó ta có:
\(\left\{\begin{matrix} a+b=\frac{10}{3}\\ ab=\log_xy.\log_yx=1\end{matrix}\right.\)
Áp dụng định lý Viete đảo thì \(a,b\) là nghiệm của PT:
\(x^2-\frac{10}{3}x+1=0\) . PT trên có hai nghiệm \(3,\frac{1}{3}\)
Giả sử \(a=\log_yx=3\) và \(b=\log_xy=\frac{1}{3}\)
\(\left\{\begin{matrix} \log_y\left(\frac{144}{y}\right)=3\\ \log_x\left(\frac{144}{x}\right)=\frac{1}{3} \end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=24\sqrt{3}\\ y=2\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow \frac{x+y}{2}=13\sqrt{3}\). Đáp án D
Ta có : \(y'=3x^2+6x=0\Leftrightarrow\begin{cases}x=-2\Rightarrow y=m+4\\x=0\Rightarrow y=m\end{cases}\)
Vậy hàm số có 2 điểm cực trị \(A\left(0;m\right);B\left(-2;m+4\right)\)
Ta có \(\overline{OA}=\left(O;m\right);\overline{OB}=\left(-2;m+4\right)\)
Để \(\widehat{AOB}=120^0\) thì \(\cos AOB=-\frac{1}{2}\)
\(\Leftrightarrow\frac{m\left(m+4\right)}{\sqrt{m^2\left(4+\left(m+4\right)^2\right)}}=-\frac{1}{2}\)
\(\Leftrightarrow\) \(m=\frac{-12\pm2\sqrt{3}}{3}\) và -4<m<0
\(\Leftrightarrow m=\frac{-12\pm2\sqrt{3}}{3}\)
5.
\(y'=4x^3-8x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{2}\\x=-\sqrt{2}\left(l\right)\end{matrix}\right.\)
\(y\left(0\right)=-2\) ; \(y\left(\sqrt{2}\right)=-6\) ; \(y\left(\sqrt{3}\right)=-5\)
\(\Rightarrow M=-2\)
Ồ, nhầm dấu \(f'\left(x\right)\) nên kết quả ko đúng
Khi \(m>\frac{3}{2}\) thì \(f'\left(x\right)< 0\) hàm nghịch biến mới đúng
\(\Rightarrow f\left(x\right)_{min}=f\left(2\right)=\left(m-2\right)^2-2ln3.m\ge0\)
Giải BPT này thì \(m\ge6\)
\(\Leftrightarrow f\left(x\right)=\left(x-m\right)^2-2mln\left(x+1\right)\ge0\)
Ta cần tìm m thuộc khoảng đã cho sao cho \(\min\limits_{\left[1;2\right]}f\left(x\right)\ge0\)
\(f'\left(x\right)=2\left[x-m-\frac{m}{x+1}\right]=0\)
\(\Leftrightarrow x=m\left(1+\frac{1}{x+1}\right)=m\left(\frac{x+2}{x+1}\right)\Rightarrow m=\frac{x^2+x}{x+2}\) (1)
Hàm \(g\left(x\right)=\frac{x^2+x}{x+2}\) đồng biến trên \(\left[1;2\right]\Rightarrow g\left(1\right)\le g\left(x\right)\le g\left(2\right)\Leftrightarrow\frac{2}{3}\le g\left(x\right)\le\frac{3}{2}\)
\(\Rightarrow\) Với \(\left[{}\begin{matrix}0< m< \frac{2}{3}\\m>\frac{3}{2}\end{matrix}\right.\) thì \(f'\left(x\right)=0\) vô nghiệm \(\Rightarrow f\left(x\right)\) nghịch biến
\(\Rightarrow f\left(x\right)_{min}=f\left(2\right)=\left(m-2\right)^2-2ln3.m\ge0\) (2)
Trên \(\left(0;\frac{2}{3}\right)\) ko có m nguyên nên ta chỉ quan tâm \(m\in\left(\frac{3}{2};10\right)\)
Giải (2) và lấy m nguyên ta được \(m\ge6\)
- Với \(\frac{2}{3}\le m\le\frac{3}{2}\Rightarrow f'\left(x\right)=0\) có đúng 1 nghiệm
Trên đoạn này có duy nhất \(m=1\) nguyên nên ta chỉ cần kiểm tra với \(m=1\)
\(f'\left(x\right)=\frac{x^2-2}{x+2}=0\Rightarrow x=\sqrt{2}\)
Từ BBT ta thấy \(f\left(x\right)_{min}=f\left(\sqrt{2}\right)=\left(\sqrt{2}-1\right)^2-2ln\left(\sqrt{2}+1\right)< 0\) (ktm)
Vậy \(m\ge6\Rightarrow\) có 4 giá trị nguyên
Lời giải:
Giả sử \(\log _{3}a=\log_4b=\log_{12}c=\log_{13}(a+b+c)=t\)
\(\Rightarrow 13^t=3^t+4^t+12^t\)
\(\Rightarrow \left ( \frac{3}{13} \right )^t+\left ( \frac{4}{13} \right )^t+\left ( \frac{12}{13} \right )^t=1\)
Xét vế trái , đạo hàm ta thấy hàm luôn nghịch biến nên phương trình có duy nhất một nghiệm \(t=2\)
Khi đó \(\log_{abc}144=\log_{144^t}144=\frac{1}{t}=\frac{1}{2}\)
Đáp án B
cho em hỏi tại sao lại có 3^t +4^t +12^t=13^t. Với lại em không hiểu chỗ tại sao hàm số nghịch biến. Và tại sao từ \(\log_{abc}144=\log144_{144^t}=\dfrac{1}{t}\)