K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2018

2016 = 2 5 . 3 2 . 7 , nên mỗi ước số nguyên dương của 2016 có dạng   2 m . 3 n . 7 p

( với m,n,p ∈ N và 0≤ m ≤ 5, 0 ≤ n ≤2, 0 ≤ p ≤1

Do đó, có 6 cách chọn m,3 cách chọn n, 2 cách chọn p. Theo quy tắc nhân , có 6*3*2=36 ước số nguyên dương của 2016

Nhận xét. Tổng quát A= p1k1p2k2…pnkn với (p1,p2,…,pn là các nguyên tố khác nhau) sẽ có (k1+1)(k2+2)(kn+1) ước số nguyên dương

Chọn B

AH
Akai Haruma
Giáo viên
14 tháng 8 2019

Lời giải:
Ước nguyên dương cùa $a$ có dạng $2^x3^y.5^z$

$x$ có $11$ cách chọn ($0\to 10$)

$y$ có $13$ cách chọn ($0\to 12$)

$z$ có $15$ cách chọn ($0\to 14$)

Do đó số ước nguyên dương của $a$ là $11.13.15=2145$

NV
14 tháng 11 2019

Câu 1:

Khong gian mẫu: \(C_{11}^3\)

Có 5 cặp bi cùng số, do đó có \(5\) cách chọn ra 1 cặp cùng số, viên còn lại có 9 cách chọn \(\Rightarrow\) có 45 cách chọn 3 viên có 2 viên cùng số (tất nhiên là ko thể 3 viên cùng số được)

Xác suất: \(P=\frac{C_{11}^3-45}{C_{11}^3}=\frac{8}{11}\)

Câu 2:

Không gian mẫu: \(9!\)

Xếp 4 bạn nam cạnh nhau và hoán vị, có \(4!\) cách

Coi 4 bạn nam này là 1 người, xếp hàng cùng 5 bạn nữ \(\Rightarrow\)\(6!\) cách hoán vị

Vậy có \(4!.6!\) cách

Xác suất: \(P=\frac{4!.6!}{9!}=\frac{1}{21}\)

NV
24 tháng 11 2019

\(\frac{P_nC_n^k}{n!A_n^k}=\frac{n!.\frac{n!}{k!\left(n-k\right)!}}{n!.\frac{n!}{\left(n-k\right)!}}=\frac{1}{k!}\)

Chắc là bạn ghi nhầm đề

19 tháng 10 2016

3*4*4*4*4*4=3072 9 số

b)2*4*4*4*4*4=2048 số

20 tháng 10 2016

gọi số cần tìm là abcdef (a#0 ; a;b;c;d;e;f € A ; f chẵn )

f có 3 cách chọn

a có 5 cách chọn lọc

b;c;d;e đều có 6 cách chọn

 

=> có 3*5*6*6*6*6 = 19440 số thỏa mãn yêu cầu bài toán

b) gọi số cần tìm là abcdef (a#0;f=0,5 ; a;b;c;d;e;f € A )

f=0,5 => f có 2 cách chọn

a có 5 cách chọn

b;c;d;e đều có 6 cách chọn

=> có 2*5*6*6*6*6 = 12960

NV
1 tháng 4 2020

\(\lim\limits_{x\rightarrow3}f\left(x\right)=\lim\limits_{x\rightarrow3}\frac{8x^{2016}-24x^{2015}}{x^{2017}+2x^{2016}-15x^{2015}}=\lim\limits_{x\rightarrow3}\frac{8\left(x-3\right)}{x^2+2x-15}=\lim\limits_{x\rightarrow3}\frac{8\left(x-3\right)}{\left(x-3\right)\left(x+5\right)}=\lim\limits_{x\rightarrow3}\frac{8}{x+5}=1\)

\(\lim\limits_{x\rightarrow1}g\left(x\right)=\lim\limits_{x\rightarrow1}\frac{\sqrt{2x+2}-2+2-\sqrt{3x+1}}{m\left(x-1\right)\left(x+1\right)}\)

\(=\lim\limits_{x\rightarrow1}\frac{\frac{2\left(x-1\right)}{\sqrt{2x+2}+2}-\frac{3\left(x-1\right)}{2+\sqrt{3x+1}}}{m\left(x-1\right)\left(x+1\right)}=\lim\limits_{x\rightarrow1}\frac{\frac{2}{\sqrt{2x+2}+2}-\frac{3}{2+\sqrt{3x+1}}}{m\left(x+1\right)}=\frac{\frac{2}{4}-\frac{3}{4}}{2m}=-\frac{1}{8m}\)

\(\Rightarrow-\frac{1}{8m}=1\Rightarrow m=-\frac{1}{8}\)

19 tháng 12 2016

2015