Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do n \(\in\) N* nên 10n + 8 = (...0) + 8 = (...8) => 10n + 8 có chữ số tận cùng là 8 nên không thể là số chính phương (bình phương của một số tự nhiên).
C=2+4+6+...+2n
=(2n+2)+[(2n-2)+4]+[(2n-4)+6]+...+[(n+2)+n]
=2(n+1)n/2
=(n+1)n
vậy C không phải là số chính phương
Tìm số tự nhiên a , biết rằng với mọi n thuộc số tự nhiên ta có an =1
Tìm a,giải thích vì sao !!!!!!!!!!!
A=n^5-n+2018
=n(n^4-1)+2018
=n(n-1)(n+1)(n^2+1)+2016+2 chia 3 dư 2
=> ko
a)
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | ||
n2 | 1 | 4 | 9 | 16 | 25 | 36 | 49 | 64 | 81 | 100 | 121 | 144 | 169 | 196 | 225 | 256 | 289 | 324 | 361 | 400 |
b)
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
n2 | 1 | 4 | 9 | 16 | 25 | 36 | 49 | 64 | 81 | 100 |
Lời giải:
Các số tự nhiên lẻ đầu tiên: $1,3,5,....$
Số thứ $n$ là: $(n-1)\times 2+1=2n-1$
Tổng của $n$ số tự nhiên lẻ đầu tiên:
$1+3+5+....+(2n-1)=[(2n-1)+1].n:2=2n.n:2=n^2$ là số chính phương.
a) \(2^2.3^4.5^2=2^2.9^2.5^2=\left(2.9.5\right)^2=90^2\) là bình phương của số 90
b) \(2^2.3^2.5^{15}=2^2.3^2.5^{14}.5=2^2.3^2.78125^2.5=\left(2.3.78125\right)^2.5\)
Vì 5 \(\ne\) (2. 3. 78125) nên (2.3.78125)2.5 không thể là bình phương của một số
a) \(2^2.3^4.5^2=2^2.9^2.5^2\)
Ta có : \(2^2.2^9.5^2\) đều là bình phương của nhiều số.
Mà : \(2^2.9^2.5^2\) = 8100 = \(90^2\)
b) \(2^2.3^2.5^{15}\) không phải là bình phương của một số do 515 không phải bình phương của số nào
Do n \(\in\) N* nên 10n + 8 = (...0) + 8 = (...8) => 10n + 8 có chữ số tận cùng là 8 nên không thể là số chính phương (bình phương của một số tự nhiên)