K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 6 2020

\(sin^4x=\left(sin^2x\right)^2=\left(\frac{1}{2}-\frac{1}{2}cos2x\right)^2=\frac{1}{4}-\frac{1}{2}cos2x+\frac{1}{4}cos^22x\)

\(=\frac{1}{4}-\frac{1}{2}cos2x+\frac{1}{4}\left(\frac{1}{2}+\frac{1}{2}cos4x\right)\)

\(=\frac{3}{8}-\frac{1}{2}cos2x+\frac{1}{8}cos4x\)

\(\Rightarrow\left\{{}\begin{matrix}a=3\\b=1\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
29 tháng 3 2019

Lời giải:

a)

\(\frac{1-\cos x}{\sin x}=\frac{(1-\cos x)(1+\cos x)}{\sin x(1+\cos x)}=\frac{1-\cos ^2x}{\sin x(1+\cos x)}=\frac{\sin ^2x}{\sin x(1+\cos x)}=\frac{\sin x}{1+\cos x}\)

b)

\((\sin x+\cos x-1)(\sin x+\cos x+1)=(\sin x+\cos x)^2-1^2\)

\(=\sin ^2x+\cos ^2x+2\sin x\cos x-1=1+2\sin x\cos x-1=2\sin x\cos x\)

c)

\(\frac{\sin ^2x+2\cos x-1}{2+\cos x-\cos ^2x}=\frac{1-\cos ^2x+2\cos x-1}{2+\cos x-\cos ^2x}=\frac{-\cos ^2x+2\cos x}{2+\cos x-\cos ^2x}\)

\(=\frac{\cos x(2-\cos x)}{(2-\cos x)(\cos x+1)}=\frac{\cos x}{\cos x+1}\)

d)

\(\frac{\cos ^2x-\sin ^2x}{\cot ^2x-\tan ^2x}=\frac{\cos ^2x-\sin ^2x}{\frac{\cos ^2x}{\sin ^2x}-\frac{\sin ^2x}{\cos ^2x}}=\frac{\sin ^2x\cos ^2x(\cos ^2x-\sin ^2x)}{\cos ^4x-\sin ^4x}\)

\(=\frac{\sin ^2x\cos ^2x(\cos ^2x-\sin ^2x)}{(\cos ^2x-\sin ^2x)(\cos ^2x+\sin ^2x)}=\frac{\sin ^2x\cos ^2x}{\sin ^2x+\cos ^2x}=\sin ^2x\cos ^2x\)

e)

\(1-\cot ^4x=1-\frac{\cos ^4x}{\sin ^4x}=\frac{\sin ^4x-\cos ^4x}{\sin ^4x}=\frac{(\sin ^2x-\cos ^2x)(\sin ^2x+\cos ^2x)}{\sin ^4x}\)

\(=\frac{\sin ^2x-\cos ^2x}{\sin ^4x}=\frac{\sin ^2x-(1-\sin ^2x)}{\sin ^4x}=\frac{2\sin ^2x-1}{\sin ^4x}=\frac{2}{\sin ^2x}-\frac{1}{\sin ^4x}\)

Ta có ddpcm.

28 tháng 11 2019

132312323123

AH
Akai Haruma
Giáo viên
26 tháng 10 2018

a)

\((\sin x+\cos x)^2=\sin ^2x+2\sin x\cos x+\cos ^2x\)

\(=(\sin ^2x+\cos ^2x)+2\sin x\cos x=1+2\sin x\cos x\)

b)

\(\sin ^4x+\cos ^4x=\sin ^4x+2\sin ^2x\cos ^2x+\cos ^4x-2\sin ^2\cos ^2x\)

\(=(\sin ^2x+\cos ^2x)^2-2\sin ^2x\cos ^2x\)

\(=1-2\sin ^2x\cos ^2x\)

c)

\(\tan ^2x-\sin ^2x=(\frac{\sin x}{\cos x})^2-\sin ^2x\)

\(=\sin ^2x\left(\frac{1}{\cos ^2x}-1\right)=\sin ^2x. \frac{1-\cos ^2x}{\cos ^2x}=\sin ^2x.\frac{\sin ^2x}{\cos ^2x}\)

\(=\sin ^2x\left(\frac{\sin x}{\cos x}\right)^2=\sin ^2x\tan ^2x\)

AH
Akai Haruma
Giáo viên
26 tháng 10 2018

d)

\(\sin ^6x+\cos ^6x=(\sin ^2x)^3+(\cos ^2x)^3\)

\(=(\sin ^2x+\cos ^2x)(\sin ^4x-\sin ^2x\cos ^2x+\cos ^4x)\)

\(=\sin ^4x-\sin ^2x\cos ^2x+\cos ^4x\)

\(=(\sin ^4x+\cos ^4x)-\sin ^2x\cos ^2x=1-2\sin ^2x\cos ^2x-\sin ^2x\cos ^2x\)

\(=1-3\sin ^2x\cos ^2x\) (theo kq phần b)

e)

\(\sin x\cos x(1+\tan x)(1+\cot x)=\sin x\cos x(1+\frac{\sin x}{\cos x})(1+\frac{\cos x}{\sin x})\)

\(=\sin x\cos x.\frac{\cos x+\sin x}{\cos x}.\frac{\sin x+\cos x}{\sin x}\)

\(=(\sin x+\cos x)^2=\sin ^2x+\cos ^2x+2\sin x\cos x\)

\(=1+2\sin x\cos x\)

-------------

P/s: Nói chung cứ bám vào công thức \(\sin ^2x+\cos ^2x=1\)

21 tháng 9 2020

mọi người ơi giúp mình với

NV
5 tháng 5 2019

\(sin^4x+cos^4x=sin^4x+cos^4x+2sin^2x.cos^2x-2sin^2x.cos^2x\)

\(=\left(sin^2x+cos^2x\right)^2-\frac{1}{2}\left(2sinx.cosx\right)^2\)

\(=1-\frac{1}{2}sin^22x\Rightarrow\left\{{}\begin{matrix}a=1\\b=1\\c=2\end{matrix}\right.\) \(\Rightarrow a+3b+c=?\)

\(\frac{sin\left(A-B\right)}{sinC}=\frac{sin\left(A-B\right).sinC}{sin^2C}=\frac{sin\left(A-B\right).sin\left(A+B\right)}{sin^2C}=\frac{-\frac{1}{2}\left(cos2A-cos2B\right)}{sin^2C}\)

\(=\frac{-\frac{1}{2}\left(1-2sin^2A-1+2sin^2B\right)}{sin^2C}=\frac{sin^2A-sin^2B}{sin^2C}=\frac{\left(\frac{a}{2R}\right)^2-\left(\frac{b}{2R}\right)^2}{\left(\frac{c}{2R}\right)^2}=\frac{a^2-b^2}{c^2}\)

NV
5 tháng 5 2019

Câu 3:

a/ Đề dị dị, là \(\frac{cosA+cosB}{sinB+sinC}\) hay \(\frac{cosB+cosC}{sinB+sinC}\) bạn?

b/ \(cos\left(B-C\right)-cos\left(B+C\right)=1+cosA\)

\(\Leftrightarrow cos\left(B-C\right)+cosA=1+cosA\)

\(\Leftrightarrow cos\left(B-C\right)=1\)

\(\Rightarrow B=C\Rightarrow\Delta ABC\) cân tại A

NV
21 tháng 9 2020

Câu đầu ko dịch được đề, lỗi kí tự rồi bạn

b/

\(\Leftrightarrow2cos^6x+sin^4x+2cos^2x-1=0\)

\(\Leftrightarrow2cos^2x\left(cos^4x+1\right)+\left(sin^2x-1\right)\left(sin^2x+1\right)=0\)

\(\Leftrightarrow cos^2x\left(2cos^4x+2\right)-cos^2x\left(sin^2x+1\right)=0\)

\(\Leftrightarrow cos^2x\left(2cos^4x+1-sin^2x=0\right)\)

\(\Leftrightarrow cos^2x\left(2cos^4x+cos^2x\right)=0\)

\(\Leftrightarrow cos^4x\left(2cos^2x+1\right)=0\)

\(\Leftrightarrow cos^4x=0\Leftrightarrow cosx=0\)

\(\Leftrightarrow x=\frac{\pi}{2}+k\pi\)

28 tháng 9 2020

thank

NV
19 tháng 5 2019

Câu 1:

\(a.sin\left(B-C\right)=a.sinBcosC-a.cosB.sinC\)

\(bsin\left(C-A\right)=bsinC.cosA-bcosC.sinA\)

\(csin\left(A-B\right)=csinAcosB-csinB.cosA\)

Cộng lại:

\(VT=cosA\left(bsinC-c.sinB\right)+cosB\left(c.sinA-a.sinC\right)+cosC\left(a.sinB-bsinA\right)\)

\(=cosA\left(\frac{b.c}{2R}-\frac{bc}{2R}\right)+cosB\left(\frac{ac}{2R}-\frac{ac}{2R}\right)+cosC\left(\frac{ab}{2R}-\frac{ab}{2R}\right)=0\)

Câu 2:

\(sin^2A+sin^2B+sin^2C=\frac{1}{2}-\frac{1}{2}cos2A+\frac{1}{2}-\frac{1}{2}cos2B+1-cos^2C\)

\(=2-\frac{1}{2}\left(cos2A+cos2B\right)-cosC.cosC\)

\(=2-cos\left(A+B\right)cos\left(A-B\right)+cosC.cos\left(A+B\right)\)

\(=2+cosC.cos\left(A-B\right)+cosC.cos\left(A+B\right)\)

\(=2+cosC\left[cos\left(A-B\right)+cos\left(A+B\right)\right]\)

\(=2+2cosA.cosB.cosC\)

NV
19 tháng 5 2019

Câu 3:

Ta có \(sin^2\frac{A}{2}=\frac{1-cosA}{2}=\frac{1-\frac{b^2+c^2-a^2}{2bc}}{2}=\frac{a^2-b^2-c^2+2bc}{4bc}=\frac{a^2-\left(b-c\right)^2}{4bc}\)

\(=\frac{\left(a+b-c\right)\left(a+c-b\right)}{4bc}=\frac{\left(p-c\right)\left(p-b\right)}{bc}\Rightarrow sin\frac{A}{2}=\sqrt{\frac{\left(p-b\right)\left(p-c\right)}{bc}}\)

Tương tự ta có \(sin\frac{B}{2}=\sqrt{\frac{\left(p-a\right)\left(p-c\right)}{ac}}\) ; \(sin\frac{C}{2}=\sqrt{\frac{\left(p-a\right)\left(p-b\right)}{ab}}\)

\(\Rightarrow4Rsin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}=4\left(\frac{abc}{4S}\right)\sqrt{\frac{\left(p-a\right)^2\left(p-b\right)^2\left(p-c\right)^2}{a^2b^2c^2}}\)

\(=\frac{abc.\left(p-a\right)\left(p-b\right)\left(p-c\right)}{S.abc}=\frac{\left(p-a\right)\left(p-b\right)\left(p-c\right)}{S}=\frac{\left(p-a\right)\left(p-b\right)\left(p-c\right)}{\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}}=\sqrt{\frac{\left(p-a\right)\left(p-b\right)\left(p-c\right)}{p}}=r\)