Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{101}{3^{101}}\) (1)
\(\Rightarrow\frac{1}{3}A=\frac{1}{3^2}+\frac{2}{3^3}+\frac{3}{3^4}+...+\frac{100}{3^{101}}+\frac{101}{3^{102}}\) (2)
Trừ (1) cho (2):
\(\frac{2}{3}A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{101}}-\frac{101}{3^{102}}=B-\frac{101}{3^{102}}\)
\(B=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{101}}\)
\(\Rightarrow\frac{1}{3}B=\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{101}}+\frac{1}{3^{102}}\)
\(\Rightarrow\frac{1}{3}B+\frac{1}{3}-\frac{1}{3^{102}}=\frac{1}{3}+\frac{1}{3^2}+..+\frac{1}{3^{101}}=B\)
\(\Rightarrow\frac{2}{3}B=\frac{1}{3}-\frac{1}{3^{102}}\Rightarrow B=\frac{1}{2}\left(1-\frac{1}{3^{101}}\right)=\frac{1}{2}-\frac{1}{2.3^{101}}\Rightarrow B< \frac{1}{2}\)
\(\Rightarrow A=\frac{3}{2}\left(B-\frac{101}{3^{102}}\right)< \frac{3}{2}B< \frac{3}{2}.\frac{1}{2}=\frac{3}{4}\)
giúp mình với các bạn
Bạn vào đường link này nhé:https://h.vn/hoi-dap/question/175023.html
_Hok tốt_