Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B1:
\(C=\left(3-\sqrt{5}\right)\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right)\sqrt{3-\sqrt{5}}\)
\(=\sqrt{3-\sqrt{5}}.\sqrt{3+\sqrt{5}}\left(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\right)\)
\(=\sqrt{3^2-\left(\sqrt{5}\right)^2}\left(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\right)\)
\(=\sqrt{2}\left(\sqrt{3-\sqrt{5}}.\sqrt{2}+\sqrt{3+\sqrt{5}}.\sqrt{2}\right)\)
\(=\sqrt{2}\left(\sqrt{6-2\sqrt{5}}+\sqrt{6+2\sqrt{5}}\right)\)
\(=\sqrt{2}\left(\sqrt{\left(\sqrt{5}-1\right)^2}+\sqrt{\left(\sqrt{5}+1\right)^2}\right)\)
\(=\sqrt{2}\left(\sqrt{5}-1+\sqrt{5}+1\right)=2\sqrt{10}\)
Bài 1:
\(\sqrt{24+8\sqrt{15}-\sqrt{9-4\sqrt{5}}}\)
\(=\sqrt{24+8\sqrt{15}-\left(\sqrt{5}-2\right)}\)
\(=\sqrt{26+8\sqrt{15}-\sqrt{5}}\)
Bài 2:
\(A=\sqrt{\frac{\left(x^2-3\right)^2+12x^2}{x^2}}+\sqrt{\left(x+2\right)^2-8x}\)
\(A=\sqrt{\frac{x^4+6x^2+9}{x^2}}\)
\(A=\frac{\sqrt{x^4+6x^2+9}}{\sqrt{x^2}}\)
\(A=\frac{\sqrt{\left(x^2+3\right)^2}}{x}\)
\(A=\frac{x^2+3}{x}\)
\(A=\frac{x^2+3}{x}+x-2\)
\(A=\frac{2x^2+3}{x}-2\)
wrecking ball sai rồi \(\frac{\sqrt{\left(x^2+3\right)^2}}{x}=\frac{trituyetdoix^2+3}{x}\) bằng
ĐKXĐ: \(x\ne0\)
\(y=\sqrt{\frac{x^4-6x^2+9+12x^2}{x^2}}+\sqrt{x^2+4x+4-8x}\)
\(y=\sqrt{\frac{x^4+6x^2+9}{x^2}}+\sqrt{x^2-4x+4}\)
\(y=\sqrt{\frac{\left(x^2+3\right)^2}{x^2}}+\sqrt{\left(x-2\right)^2}\)
\(y=\left|\frac{x^2+3}{x}\right|+\left|x-2\right|\)
Ta có bảng xét dấu:
x 0 2 x - 2 x 0 0 - - - + + +
Với \(x< 0,y=\frac{x^2+3}{-x}+2-x=\frac{2x^2-2x+3}{-x}\)
Với \(0< x\le2,y=\frac{x^2+3}{x}+2-x=\frac{2x+3}{x}\)
Với \(x>2,y=\frac{x^2+3}{x}+x-2=\frac{2x^2-2x+3}{x}\)
- Ta thấy ngay, với cả ba trường hợp thì \(y\in Z\Leftrightarrow x\in U\left(3\right)=\left\{-3;-1;1;3\right\}\)
\(P=\sqrt{\frac{\left(x^2-3\right)^2+12x^2}{x^2}}+\sqrt{\left(x+2\right)^2-8x}\) Đk \(x\ne0\)
\(=\frac{\sqrt{x^4-6x^2+9+12x^2}}{\sqrt{x^2}}+\sqrt{x^2+4x+4-8x}\)
\(=\frac{\sqrt{x^4+6x^2+9}}{\sqrt{x^2}}+\sqrt{x^2-4x+4}\)
\(=\frac{\sqrt{\left(x^2+3\right)^2}}{\sqrt{x^2}}+\sqrt{\left(x-2\right)^2}\)
\(=\frac{x^2+3}{x}+x-2\)
\(=\frac{x^2+3+x\left(x-2\right)}{x}=\frac{x^2+3+x^2-2x}{x}\)
\(=\frac{2x^2-2x+3}{x}\)
b, \(P=\frac{2x^2-2x+3}{x}=2x-2+\frac{3}{x}\)
Để \(P\in z\)thì \(x\inƯ\left(3\right)=\left(-3;-1;1;3\right)\)
a) \(2\sqrt{3x}-4\sqrt{3x}+27-2\sqrt{3x}=27-4\sqrt{3x}\)
b) \(3\sqrt{2x}-5\sqrt{8x}+7\sqrt{8x}+28=3\sqrt{2x}+2\sqrt{8x}+28=3\sqrt{2x}+4\sqrt{2x}+28=7\sqrt{2x}+28\)
c) \(\frac{2}{x^2-y^2}\sqrt{\frac{3\left(x+y\right)^2}{2}}=\frac{2}{\left(x-y\right)\left(x+y\right)}.\frac{\sqrt{3}\left|x+y\right|}{\sqrt{2}}=\frac{\sqrt{6}}{x-y}\)
d) \(\frac{2}{2a-1}\sqrt{5a^2\left(1-4x+4a^2\right)}=\frac{2}{2a-1}\sqrt{5a^2\left(2a-1\right)^2}=\frac{2}{2a-1}.\sqrt{5}\left|a\left(2a-1\right)\right|=2a\sqrt{5}\)
Thiếu ĐKXĐ : ..............
a) Ta có: \(2\sqrt{3x}-4\sqrt{3x}+27-2\sqrt{3x}\)
\(=27-4\sqrt{3x}\)
b) Ta có: \(3\sqrt{2x}-5\sqrt{8x}+7\sqrt{8x}+28\)
\(=3\sqrt{2x}-5.2\sqrt{2x}+7.2\sqrt{2x}+28\)
\(=3\sqrt{2x}-10\sqrt{2x}+14\sqrt{2x}+28\)
\(=7\sqrt{2x}+28\)
c) Ta có: \(\frac{2}{x^2-y^2}.\sqrt{\frac{3\left(x+y\right)^2}{2}}\)
\(=\sqrt{\frac{4}{\left(x-y\right)^2.\left(x+y\right)^2}.\frac{3\left(x+y\right)^2}{2}}\)
\(=\sqrt{\frac{2.3}{\left(x-y\right)^2}}\)
\(=\frac{1}{x-y}.\sqrt{6}\)
d) Ta có: \(\frac{2}{2a-1}.\sqrt{5a^2.\left(1-4a+4a^2\right)}\)
\(=\sqrt{\frac{4}{\left(2a-1\right)^2}.5a^2.\left(2a-1\right)^2}\)
\(=2a.\sqrt{5}\)
Điều kiện: x khác 0
\(=\sqrt{\frac{x^4-6x^2+9+12x^2}{x^2}}+\sqrt{x^2+4x+4-8x}\)
\(=\sqrt{\frac{x^4+6x^2+9}{x^2}}+\sqrt{x^2-4x+4}=\sqrt{\frac{\left(x^2+3\right)^2}{x^2}}+\sqrt{\left(x-2\right)^2}\)
\(=\left|\frac{x^2+3}{x}\right|+\left|x-2\right|=\frac{x^2+3}{\left|x\right|}+\left|x-2\right|\)
\(\sqrt{\frac{\left(x^2-3\right)^2+12x^2}{x^2}}+\sqrt{\left(x+2\right)^2-8x}\)
=\(\frac{\sqrt{x^4-6x+9+12x^2}}{\sqrt{x^2}}+\sqrt{x^2+4x+4-8x}\)
=\(\frac{\sqrt{x^4+6x+9}}{x}+\sqrt{x^2-4x+4}\)
=\(\frac{\sqrt{\left(x^2+3\right)^2}}{x}+\sqrt{\left(x-2\right)^2}\)
=\(\frac{\sqrt{\left(x^2+3\right)^2}}{x}+\left|x-2\right|\)
=\(\frac{x^2+3}{x}+\left|x-2\right|\)
TH1: x\(\ge\)2 =>|x-2|=x-2
=>\(\frac{x^2+3}{x}+\left|x-2\right|\)
=\(\frac{x^2+3}{x}+x-2\)
=\(\frac{x^2+3}{x}+\frac{x^2-2x}{x}=\frac{2x^2-2x+3}{x}\)
TH2:x\(\le\)2 =>|x-2|=2-x
=>\(\frac{x^2+3}{x}+\left|x-2\right|\)
=\(\frac{x^2+3}{x}+2-x\)
=\(\frac{x^2+3}{x}+\frac{2x-x^2}{x}=\frac{2x+3}{x}\)