Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}2x-1=4-3x\\y=2x-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
a: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}2x-1=4-3x\\y=2x-1\end{matrix}\right.\Leftrightarrow\left(x,y\right)=\left(1;1\right)\)
â. (A+B)2 = A2+2AB+B2
b. A2 – B2= (A-B)(A+B)
c. (A – B)2= A2 – 2AB+ B2
d. A3 + B3= (A+B)(A2- AB +B2)
e. cái này bạn phải chú ý cách sắp xếp mà sx nó lại \(x^6-2x^3y+y^2\) (A – B)2= A2 – 2AB+ B2
f. (A+B)3= A3+3A2B +3AB2+B3
a) x2+6xy+9y2 = x2+2.x.3y+(3y)2 = (x+3y)2
b) x2-\(\dfrac{1}{4}\)= x2- (\(\dfrac{1}{2}\))2 = (x-\(\dfrac{1}{2}\))(x+\(\dfrac{1}{2}\))
c) x2 -10x+25 = x2 -2.x.5+52 = (x-5)2
d) 8x3+27y3 = (2x)3+(3y)3 = (2x+3y)[(2x)2 -2x.3y+(3y)2]
e) x6 +y2 -2x3y = x6-2x3y +y2 = (x3)2 -2x3y +y2 = (x3 -y)2
f) x3 +9x2y +27xy2 +27y3 = x3 +3.x2.3y +3.x.(3y)2 +(3y)3 = (x+3y)3
Bài 1:
\(\frac{ab}{(a-c)(b-c)}+\frac{bc}{(b-a)(c-a)}+\frac{ca}{(c-b)(a-b)}=\frac{-ab}{(c-a)(b-c)}+\frac{-bc}{(a-b)(c-a)}+\frac{-ca}{(b-c)(a-b)}\)
\(=\frac{-ab(a-b)}{(a-b)(b-c)(c-a)}+\frac{-bc(b-c)}{(a-b)(b-c)(c-a)}+\frac{-ca(c-a)}{(a-b)(b-c)(c-a)}\)
\(=\frac{-ab(a-b)-bc(b-c)-ca(c-a)}{(a-b)(b-c)(c-a)}=\frac{-(a^2b+b^2c+c^2a)+(ab^2+bc^2+ca^2)}{-(a^2b+b^2c+c^2a)+(ab^2+bc^2+ca^2)}=1\)
Bài 2:
Ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow \frac{a+b}{ab}+\frac{1}{c}-\frac{1}{a+b+c}=0\)
\(\Leftrightarrow \frac{a+b}{ab}+\frac{a+b}{c(a+b+c)}=0\)
\(\Leftrightarrow (a+b).\frac{c(a+b+c)+ab}{abc(a+b+c)}=0\)
\(\Leftrightarrow (a+b).\frac{(c+a)(c+b)}{abc(a+b+c)}=0\Rightarrow (a+b)(b+c)(c+a)=0\)
\(\Rightarrow \left[\begin{matrix} a+b=0\\ b+c=0\\ c+a=0\end{matrix}\right.\)
Không mất tổng quát giả sử $a+b=0$
Khi đó:
\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{a^3}+\frac{1}{(-a)^3}+\frac{1}{c^3}=\frac{1}{c^3}(1)\)
\(\frac{1}{a^3+b^3+c^3}=\frac{1}{a^3+(-a)^3+c^3}=\frac{1}{c^3}(2)\)
Từ \((1);(2)\Rightarrow \frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{a^3+b^3+c^3}\) (đpcm)