Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2^{12}.3^5-4^6.81}{\left(2^2.3\right)^6+8^4.3^5}=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}=\frac{2^{12}.3^4\left(3-1\right)}{2^{12}.3^5\left(3+1\right)}=\frac{2}{3.4}=\frac{1}{6}\)
=\(\frac{2^{12}.3^5+2^{12}.3^4}{2^{12}.3^6+2^{12}.3^3}\)
=\(\frac{2^{12}\left(3^5+3^4\right)}{2^{12}\left(3^6+3^3\right)}\)
\(=\frac{324}{756}\)
=\(\frac{3}{7}\)
a) P = 2x + 2xy - y
|x| = 2,5 => x thuộc { 2,5; -2,5 }
* TH1 : x = 2,5 và y = -0,75
Thay vào P ta có :
P = 2 . 2,5 + 2 . 2,5 . (-0,75) - ( -0,75 )
P = 2
* TH2 : x = -2,5 và y = -0,75
Thay vào P ta có :
P = 2 . ( -2,5 ) + 2 . ( -2,5 ) . ( -0,75 ) - ( -0,75 )
P = -0,5
Vậy.....
b) \(Q=\frac{2^{12}\cdot3^5-4^6\cdot81}{\left(2^2\cdot3\right)^6+8^4\cdot3^5}\)
\(Q=\frac{2^{12}\cdot3^5-2^{12}\cdot3^4}{2^{12}\cdot3^6+2^{12}\cdot3^5}\)
\(Q=\frac{2^{12}\cdot3^4\cdot\left(3-1\right)}{2^{12}\cdot3^5\cdot\left(3+1\right)}\)
\(Q=\frac{2}{3\cdot4}\)
\(Q=\frac{1}{3\cdot2}\)
\(Q=\frac{1}{6}\)
p/s: P làm Q, Q làm P :D
\(=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}-\frac{5^{10}.7^3-5^{10}.7^4}{5^9.7^3+5^4.2^3.7^3}\)
\(=\frac{2^{12}.3^4\left(3-1\right)}{2^{12}.3^5\left(3+1\right)}-\frac{5^{10}.7^3\left(1-7\right)}{5^4.7^3\left(5^5+2^3\right)}\)
\(=\frac{1}{6}+\frac{93750}{3133}\)
Bài giải
\(\frac{2^{12}\cdot3^5-4^6\cdot81}{\left(2^2\cdot6\right)^6+8^4\cdot3^5}=\frac{2^{12}\cdot3^5-\left(2^2\right)^6\cdot3^4}{2^{12}\cdot6^6+\left(2^3\right)^4\cdot3^5}=\frac{2^{12}\cdot3^5-2^{12}\cdot3^4}{2^{12}\cdot2^6\cdot3^6+2^{12}\cdot3^5}=\frac{2^{12}\cdot3^4\left(3-1\right)}{2^{12}\cdot3^4\left(2^6\cdot3^2+3\right)}\)
\(=\frac{2}{64\cdot9+3}=\frac{2}{576+3}=\frac{2}{579}\)
c: \(C=\dfrac{\left(\dfrac{2}{5}\cdot5\right)^7+\dfrac{9^3}{4^3}:\dfrac{3^3}{16^3}}{2^7\cdot5^2+2^9}=\dfrac{1+1728}{3712}=\dfrac{1729}{3712}\)
\(D=\dfrac{2^{12}\cdot3^5-2^{12}\cdot3^4}{2^{12}\cdot3^6+2^{12}\cdot3^5}=\dfrac{3^5-3^4}{3^6+3^5}=\dfrac{3^4\left(3-1\right)}{3^5\left(3+1\right)}=\dfrac{2}{3\cdot4}=\dfrac{2}{12}=\dfrac{1}{6}\)
\(E=\dfrac{5^{10}\cdot7^3-5^{10}\cdot7^4}{5^9\cdot7^3+5^9\cdot7^3\cdot2^3}=\dfrac{5^{10}\cdot7^3\cdot\left(-6\right)}{5^9\cdot7^3\cdot9}=5\cdot\dfrac{-2}{3}=\dfrac{-10}{3}\)
\(\frac{2^{12}.3^5-4^6.81}{\left(2^2.3\right)^6+8^4.3^5}\)
\(=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}\)
\(=\frac{2^{12}.\left(3^5-3^4\right)}{2^{12}.\left(3^6+3^5\right)}\)
\(=\frac{3^5-3^4}{3^6+3^5}=\frac{3^4.\left(3-1\right)}{3^5\left(3+1\right)}\)
\(=\frac{3^4.2}{3^5.4}=\frac{3^4.2}{3^4.3.4}=\frac{2}{12}=\frac{1}{6}\)
P/s: Hoq chắc ạ (: Ms lp 6 lm đại
\(\frac{x}{2}=\frac{y}{3}\)
\(\Leftrightarrow\frac{x}{8}=\frac{y}{12}\)(1)
\(\frac{y}{4}=\frac{z}{5}\)
\(\Leftrightarrow\frac{y}{12}=\frac{z}{15}\)(2)
Từ (1) (2)
\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
\(\Rightarrow\hept{\begin{cases}x=2.8\\y=2.12\\z=2.15\end{cases}\Rightarrow}\hept{\begin{cases}x=16\\y=24\\z=30\end{cases}}\)
A=663552
(22⋅3)6⋅84⋅35
A= 663552
4096⋅177147⋅4096
A= 663552
2972033482752
A= 1
4478976