Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(\(\frac{3}{4}\)x n+1 - \(\frac{1}{2}\)yn) .2xy - (\(\frac{2}{3}\)xn+1 - \(\frac{5}{6}\)yn ).7xy
\(\)
giúp mik bài này với :
tìm giá trị lớn nhất của A=x-x-1
giúp mik nha
Bài 1: Chưa đủ dữ kiện để tính. Từ $a+b=2$ bạn chỉ có thể tính $a^2+b^2+2ab$
Bài 2:
\(a^2+b^2-ab-a-b+1=0\)
\(\Leftrightarrow 2a^2+2b^2-2ab-2a-2b+2=0\)
\(\Leftrightarrow (a^2-2ab+b^2)+(a^2-2a+1)+(b^2-2b+1)=0\)
\(\Leftrightarrow (a-b)^2+(a-1)^2+(b-1)^2=0\)
Vì \((a-b)^2\geq 0; (a-1)^2\geq 0;(b-1)^2\geq 0, \forall a,b\in\mathbb{R}\)
\(\Rightarrow (a-b)^2+(a-1)^2+(b-1)^2\geq 0\)
Dấu "=" xảy ra khi \((a-b)^2=(a-1)^2=(b-1)^2=0\Leftrightarrow a=b=1\)
Bài 3:
\(x+y=x^3+y^3=(x+y)(x^2-xy+y^2)\)
\(\Leftrightarrow (x+y)(x^2-xy+y^2-1)=0\)
\(\Rightarrow \left[\begin{matrix} x+y=0\\ x^2-xy+y^2-1=0\end{matrix}\right.\).
Nếu $x+y=0$ \(\Rightarrow x^2+y^2=x+y=0\)
Mà \(x^2\geq 0, y^2\geq 0, \forall x,y\) nên để tổng của chúng bằng $0$ thì \(x^2=y^2=0\Leftrightarrow x=y=0\) (thỏa mãn)
Nếu \(x^2-xy+y^2-1=0\)
\(\Leftrightarrow (x^2+y^2)-xy-1=0\)
\(\Leftrightarrow x+y-xy-1=0\)
\(\Leftrightarrow (x-1)(1-y)=0\) \(\Rightarrow \left[\begin{matrix} x=1\\ y=1\end{matrix}\right.\)
\(x=1\Rightarrow 1+y=1+y^2=1+y^3\)
\(\Leftrightarrow y=y^2=y^3\Rightarrow y=0\) hoặc $y=1$
\(y=1\Rightarrow x+1=x^2+1=x^3+1\)
\(\Leftrightarrow x=x^2=x^3\Rightarrow x=0\) hoặc $x=1$.
Vậy $(x,y)=(0,0); (1,0), (0,1), (1,1)$
Bài 1.
a)\(\frac{4x-4}{x^2-4x+4}\div\frac{x^2-1}{\left(2-x\right)^2}=\frac{4\left(x-1\right)}{\left(x-2\right)^2}\div\frac{\left(x-1\right)\left(x+1\right)}{\left(x-2\right)^2}=\frac{4\left(x-1\right)}{\left(x-2\right)^2}\times\frac{\left(x-2\right)^2}{\left(x-1\right)\left(x+1\right)}=\frac{4}{x+1}\)
b) \(\frac{2x+1}{2x^2-x}+\frac{32x^2}{1-4x^2}+\frac{1-2x}{2x^2+x}=\frac{2x+1}{x\left(2x-1\right)}+\frac{-32x^2}{4x^2-1}+\frac{1-2x}{x\left(2x+1\right)}\)
\(=\frac{\left(2x+1\right)\left(2x+1\right)}{x\left(2x-1\right)\left(2x+1\right)}+\frac{-32x^3}{x\left(2x-1\right)\left(2x+1\right)}+\frac{\left(1-2x\right)\left(2x-1\right)}{x\left(2x-1\right)\left(2x+1\right)}\)
\(=\frac{4x^2+4x+1}{x\left(2x-1\right)\left(2x+1\right)}+\frac{-32x^3}{x\left(2x-1\right)\left(2x+1\right)}+\frac{-4x^2+4x-1}{x\left(2x-1\right)\left(2x+1\right)}\)
\(=\frac{4x^2+4x+1-32x^3-4x^2+4x-1}{x\left(2x-1\right)\left(2x+1\right)}=\frac{-32x^3+8x}{x\left(2x-1\right)\left(2x+1\right)}\)
\(=\frac{-8x\left(4x^2-1\right)}{x\left(2x-1\right)\left(2x+1\right)}=\frac{-8x\left(2x-1\right)\left(2x+1\right)}{x\left(2x-1\right)\left(2x+1\right)}=-8\)
c) \(\left(\frac{1}{x+1}+\frac{1}{x-1}-\frac{2x}{1-x^2}\right)\times\frac{x-1}{4x}\)
\(=\left(\frac{1}{x+1}+\frac{1}{x-1}+\frac{2x}{x^2-1}\right)\times\frac{x-1}{4x}\)
\(=\left(\frac{x-1}{\left(x-1\right)\left(x+1\right)}+\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{2x}{\left(x-1\right)\left(x+1\right)}\right)\times\frac{x-1}{4x}\)
\(=\left(\frac{x-1+x+1+2x}{\left(x-1\right)\left(x+1\right)}\right)\times\frac{x-1}{4x}\)
\(=\frac{4x}{\left(x-1\right)\left(x+1\right)}\times\frac{x-1}{4x}=\frac{1}{x+1}\)
Bài 3.
N = ( 4x + 3 )2 - 2x( x + 6 ) - 5( x - 2 )( x + 2 )
= 16x2 + 24x + 9 - 2x2 - 12x - 5( x2 - 4 )
= 14x2 + 12x + 9 - 5x2 + 20
= 9x2 + 12x + 29
= 9( x2 + 4/3x + 4/9 ) + 25
= 9( x + 2/3 )2 + 25 ≥ 25 > 0 ∀ x
=> đpcm