Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=2\sqrt{5}-5\sqrt{5}-4\sqrt{5}+11\sqrt{5}=4\sqrt{5}\)
b: \(=2\sqrt{5}-2-2\sqrt{5}=-2\)
c: \(=3-\sqrt{6}+2\sqrt{6}-3=\sqrt{6}\)
d: \(=\dfrac{2\left(2\sqrt{2}-\sqrt{3}\right)}{\sqrt{6}\left(\sqrt{3}-2\sqrt{2}\right)}-\dfrac{1}{\sqrt{6}}\)
\(=\dfrac{-3}{\sqrt{6}}=-\dfrac{3\sqrt{6}}{6}=-\dfrac{\sqrt{6}}{2}\)
e: \(=\dfrac{8}{3}\sqrt{3}-\dfrac{1}{3}\sqrt{3}-\dfrac{4}{5}\sqrt{3}=\dfrac{23}{15}\sqrt{3}\)
a) \(\left(\sqrt{8}-3\sqrt{2}+\sqrt{10}\right)\sqrt{2}-\sqrt{5}=\sqrt{16}-6+\sqrt{20}-\sqrt{5}=4-6+2\sqrt{5}-\sqrt{5}=\sqrt{5}-2\)
b) \(0,2\sqrt{\left(-10\right)^3.3}+2\sqrt{\left(\sqrt{3}-\sqrt{5}\right)^2}=0,2\left|-10\right|\sqrt{3}+2\left|\sqrt{3}-\sqrt{5}\right|=0,2.10.\sqrt{3}+2\left(\sqrt{5}-\sqrt{3}\right)=2\sqrt{3}+2\sqrt{5}-2\sqrt{3}=2\sqrt{5}\)
c) \(\left(\dfrac{1}{2}\sqrt{\dfrac{1}{2}}-\dfrac{3}{2}\sqrt{2}+\dfrac{4}{5}\sqrt{200}\right):\dfrac{1}{8}=\left(\dfrac{1}{2}\sqrt{\dfrac{2}{4}}-\dfrac{3}{2}\sqrt{2}+8\sqrt{2}\right):\dfrac{1}{8}=\left(\dfrac{1}{4}\sqrt{2}-\dfrac{2}{3}\sqrt{2}+8\sqrt{2}\right):\dfrac{1}{8}=\dfrac{27}{4}\sqrt{2}.8=54\sqrt{2}\)
d) \(2\sqrt{\left(\sqrt{2}-3\right)^2}+\sqrt{2.\left(-3\right)^2}-5\sqrt{\left(-1\right)^4}=2\left(3-\sqrt{2}\right)+3\sqrt{2}-5=6-2\sqrt{2}+3\sqrt{2}-5=1+\sqrt{2}\)
b: \(=\dfrac{\sqrt{5}+1}{\sqrt{5}-1}+\dfrac{\sqrt{5}-1}{\sqrt{5}+1}\)
\(=\dfrac{6+2\sqrt{5}+6-2\sqrt{5}}{4}=\dfrac{12}{4}=3\)
c: \(=\sqrt{13+30\sqrt{2+2\sqrt{2}+1}}\)
\(=\sqrt{13+30\left(\sqrt{2}+1\right)}=\sqrt{43+30\sqrt{2}}\)
e: \(=\dfrac{2\sqrt{3+\sqrt{5-2\sqrt{3}-1}}}{\sqrt{6}-\sqrt{2}}\)
\(=\dfrac{\sqrt{2}\cdot\sqrt{3+\sqrt{3}-1}}{\sqrt{3}-1}=\dfrac{\sqrt{4+2\sqrt{3}}}{\sqrt{3}-1}=\dfrac{\sqrt{3}+1}{\sqrt{3}-1}\)
\(=\dfrac{4-2\sqrt{3}}{2}=2-\sqrt{3}\)
bạn nên tự nghiên cứu rồi giải đi chứ bạn đưa 1 loạt thế thì ai rảnh mà giải, với lại cứ bài gì không biết chưa chịu suy nghĩ đã hỏi rồi thì tiến bộ sao được, đúng không
Lời giải:
a) Ta có:
\(14-6\sqrt{5}=14-2\sqrt{45}=9+5-2\sqrt{9.5}=(\sqrt{9}-\sqrt{5})^2=(3-\sqrt{5})^2\)
\(\Rightarrow \sqrt{14-6\sqrt{5}}=3-\sqrt{5}\)
\(6+2\sqrt{5}=5+1+2\sqrt{5.1}=(\sqrt{5}+1)^2\)
\(\Rightarrow \sqrt{6+2\sqrt{5}}=\sqrt{5}+1\)
Do đó: \(\sqrt{14-6\sqrt{5}}+\sqrt{6+2\sqrt{5}}=3-\sqrt{5}+\sqrt{5}+1=4\)
b)
\(\frac{\sqrt{10}+10}{1+\sqrt{10}}-\frac{5\sqrt{2}-2\sqrt{5}}{\sqrt{5}-\sqrt{2}}=\frac{\sqrt{10}(1+\sqrt{10})}{1+\sqrt{10}}-\frac{\sqrt{10}(\sqrt{5}-\sqrt{2})}{\sqrt{5}-\sqrt{2}}\)
\(=\sqrt{10}-\sqrt{10}=0\)
\(a.B=\left(\sqrt{5}-1\right)\sqrt{6+2\sqrt{5}}=\left(\sqrt{5}-1\right)\sqrt{5+2\sqrt{5}+1}=\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)=5-1=4\)
\(b.A=\dfrac{1}{\sqrt{2}+1}-\dfrac{\sqrt{8}-\sqrt{10}}{2-\sqrt{5}}=\dfrac{1}{\sqrt{2}+1}-\dfrac{\sqrt{2}\left(2-\sqrt{5}\right)}{2-\sqrt{5}}=\dfrac{1}{\sqrt{2}+1}-\sqrt{2}=\dfrac{-1-\sqrt{2}}{\sqrt{2}+1}=-1\)
2) \(A=\sqrt{15a^2-8a\sqrt{15}+16}\\ =\sqrt{\left(a\sqrt{15}-4\right)^2}\)
b) Khi a=\(\sqrt{\frac{3}{5}}+\sqrt{\frac{5}{3}}\) thì
\(A=\sqrt{\left[\left(\sqrt{\frac{3}{5}}+\sqrt{\frac{5}{3}}\right)\sqrt{15}-4\right]^2}\)
\(=\sqrt{\left[\left(3+5\right)-4\right]^2}\)
\(=\sqrt{4^2}\)
\(=4\)
a) ĐKXĐ : \(0\le a\ne1\)
\(\frac{\sqrt{a}-a}{\sqrt{a}-1}=\frac{-\sqrt{a}\left(1-\sqrt{a}\right)}{1-\sqrt{a}}=-\sqrt{a}\)
b) ĐKXĐ : \(b\ne0,a\ne-\sqrt{b}\)
\(\frac{a-\sqrt{b}}{\sqrt{b}}:\frac{\sqrt{b}}{a+\sqrt{b}}=\frac{a-\sqrt{b}}{\sqrt{b}}.\frac{a+\sqrt{b}}{\sqrt{b}}=\frac{a^2-b}{b}=\frac{a^2}{b}-1\)
c) \(2\sqrt{5}-\sqrt{125}-\sqrt{80}+\sqrt{605}=2\sqrt{5}-5\sqrt{5}-4\sqrt{5}+11\sqrt{5}=\sqrt{5}\left(2-5-4+11\right)\)\(=4\sqrt{5}\)
d) \(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right).\sqrt{7}+7\sqrt{8}=\left(2\sqrt{7}-2\sqrt{2}.\sqrt{7}+\sqrt{7}\right).\sqrt{7}+7\sqrt{8}\)
\(=7\left(2-2\sqrt{2}+1\right)+14\sqrt{2}=7\left(2-2\sqrt{2}+1+2\sqrt{2}\right)=7.3=21\)
e) \(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}=\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}=\sqrt{5}+1+\sqrt{5}-1=2\sqrt{5}\)
Lời giải:
a)
\(2\sqrt{5}-\sqrt{125}-\sqrt{80}+\sqrt{605}\)
\(=2\sqrt{5}-\sqrt{25}.\sqrt{5}-\sqrt{16}.\sqrt{5}+\sqrt{121}.\sqrt{5}\)
\(=2\sqrt{5}-5\sqrt{5}-4\sqrt{5}+11\sqrt{5}=\sqrt{5}(2-5-4+11)=4\sqrt{5}\)
b)
\(\frac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\frac{8}{1-\sqrt{5}}=\frac{\sqrt{20}(\sqrt{5}+\sqrt{2})}{\sqrt{5}+\sqrt{2}}+\frac{8(1+\sqrt{5})}{(1-\sqrt{5})(1+\sqrt{5})}\)
\(=\sqrt{20}+\frac{8(1+\sqrt{5})}{1-5}=2\sqrt{5}-2(1+\sqrt{5})=-2\)
e cảm ơn cô Akai Haruma