Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2: a) \(3x^3-3x=0\Leftrightarrow3x\left(x^2-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
b) \(x^2-x+\frac{1}{4}=0\Leftrightarrow x^2-2.\frac{1}{2}+\left(\frac{1}{2}\right)^2=0\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)
\(A=-2x^2+5x-8\)
\(A=-2\left(x^2-\frac{5}{2}\cdot x+4\right)\)
\(A=-2\left(x^2-2\cdot x\cdot\frac{5}{4}+\frac{25}{16}+\frac{39}{16}\right)\)
\(A=-2\left[\left(x-\frac{5}{4}\right)^2+\frac{39}{16}\right]\)
\(A=-2\left(x-\frac{5}{4}\right)^2-\frac{39}{6}\le\frac{-39}{6}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=\frac{5}{4}\)
\(B=-x^2-y^2+xy+2x+2y\)
\(2B=-2x^2-2y^2+2xy-4x-4y\)
\(2B=-\left(2x^2+2y^2-2xy+4x+4y\right)\)
\(2B=-\left(x^2-2xy+y^2+x^2+4x+4+y^2+4y+4-8\right)\)
\(2B=-\left[\left(x-y\right)^2+\left(x+2\right)^2+\left(y+2\right)^2-8\right]\)
\(B=-\frac{\left(x-y\right)^2+\left(x+2\right)^2+\left(y+2\right)^2}{2}+4\le4\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=-2\)
\(C=\frac{3}{4x^2-4x+5}=\frac{3}{\left(2x-1\right)^2+4}\le\frac{3}{4}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=\frac{1}{2}\)
\(D=\frac{x^2-6x+14}{x^2-6x+12}=\frac{x^2-6x+12+2}{x^2-6x+12}\)
\(=1+\frac{2}{\left(x-3\right)^2+3}\le1+\frac{2}{3}=\frac{5}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow x=3\)
2)
a) \(3x^3-3x=0\)
\(\Leftrightarrow3x\left(x^2-1\right)=0\)
\(\Leftrightarrow3x\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\x-1=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
Vậy x=0 ; x=-1 ; x=1
b) \(x^2-x+\dfrac{1}{4}=0\)
\(\Leftrightarrow x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2=0\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=0\)
\(\Leftrightarrow x-\dfrac{1}{2}=0\)
\(\Leftrightarrow x=\dfrac{1}{2}\)
Vậy \(x=\dfrac{1}{2}\)
1)
a) \(\left(x-2\right)\left(x^2+3x+4\right)\)
\(\Leftrightarrow x^3+3x^2+4x-2x^2-6x-8\)
\(\Leftrightarrow x^3+x^2-2x-8\)
b) \(\left(x-2\right)\left(x-x^2+4\right)\)
\(=x^2-x^3+4x-2x+2x^2-8\)
\(=3x^2-x^3+2x-8\)
c) \(\left(x^2-1\right)\left(x^2+2x\right)\)
\(=x^4+2x^3-x^2-2x\)
d) \(\left(2x-1\right)\left(3x+2\right)\left(3-x\right)\)
\(=\left(6x^2+4x-3x-2\right)\left(3-x\right)\)
\(=18x^2+12x-9x-6-6x^3-4x^2+3x^2+2x\)
\(=17x^2+5x-6-6x^3\)
câu c
\(C=\left(2x-1\right)^3+\left(2x-1\right)\left(4x^2+2x+1\right)\)
\(C=\left(2x-1\right)\left[\left(2x-1\right)^2+\left(4x^2+2x+1\right)\right]\)
\(C=\left(2x-1\right)\left[\left(4x^2-4x+1\right)+\left(4x^2+2x+1\right)\right]\)
\(C=2\left(2x-1\right)\left[4x^2-x+1\right]\)
\(4x^2-25+\left(2x+7\right)\left(5-2x\right)\)
\(=\left(2x-5\right)\left(2x+5\right)+\left(2x+7\right)\left(5-2x\right)\)
\(=\left(2x-5\right)\left(2x+5\right)-\left(2x-7\right)\left(2x-5\right)\)
\(=\left(2x-5\right)\left(2x+5-2x+7\right)\)
\(=\left(2x-5\right).12\)
Những câu khác làm tương tự
?1 . Có . Mẫu thức chung : 12x2y3z đơn giản hơn
?2 . \(\dfrac{3}{x^2-5x}=\dfrac{3}{x\left(x-5\right)}=\dfrac{6}{2x\left(x-5\right)}\)
\(\dfrac{5}{2x-10}=\dfrac{5}{2\left(x-5\right)}=\dfrac{5x}{2x\left(x-5\right)}\)
?3 . \(\dfrac{3}{x^2-5x}=\dfrac{3}{x\left(x-5\right)}=\dfrac{6}{2x\left(x-5\right)}\)
\(\dfrac{-5}{10-2x}=\dfrac{5}{2x-10}=\dfrac{5}{2\left(x-5\right)}=\dfrac{5x}{2x\left(x-5\right)}\)
a) `(2x+5)^3-(2x-5)^3-(120x^2+49)`
`=(2x+5-2x+5)[(2x+5)^2+(2x+5)(2x-5)+(2x-5)^2]-(120x^2+49)`
`=10(12x^2+25)-(120x^2+49)`
`=120x^2+250-120x^2-49`
`=201`
b) `(4-5x)^2-(3+5x)^2=(4-5x+3+5x)(4-5x-3-5x)=7.(-10x+1)=-70x+7`
Lời giải:
a.
$(2x+5)^3-(2x-5)^3-(120x^2+49)$
$=[(2x+5)-(2x-5)][(2x+5)^2+(2x+5)(2x-5)+(2x-5)^2]-(120x^2+49)$
$=10(4x^2+20x+25+4x^2-25+4x^2-20x+25)-(120x^2+49)$
$=10(12x^2+25)-(120x^2+49)=250-49=201$
b.
$(4-5x)^2-(3+5x)^2=[(4-5x)+(3+5x)][(4-5x)-(3+5x)]$
$=7(1-10x)$