Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(4x^2\left(5x-3y\right)-x^2\left(4x+y\right)=20x^3-12x^2y-4x^3-x^2y=16x^3-13x^2y\)
b) \(2ax^2-a\left(1+2x^2\right)-\left[a-x\left(x+a\right)\right]\)
\(=2ax^2-a-2ax^2-a+x^2+ax=x^2+ax-a\)
Trước hết xoá \(\frac{2x}{a^2-a+1}\)ở 2 vế. Nếu \(\frac{a}{a+1}>0\left(a< -1;a>0\right)\)thì \(x< \frac{a}{4}\). Nếu \(\frac{a}{a+1}< 0\left(-1< a< 0\right)\)thì \(x>\frac{a}{4}\)
\(ĐKXĐ:a\ne-1\)
\(\frac{2x}{a^2-a+1}-\frac{1}{2a+2}< \frac{4x-1}{2a^2-2a+2}+\frac{a-2ax}{1+a^3}\Leftrightarrow\frac{2x}{a^2-a+1}-\frac{1}{2a+2}< \frac{2x}{a^2-a+1}-\frac{1}{2a^2-2a+2}+\frac{a}{1+a^3}-\frac{2ax}{1+a^3}\)\(\Leftrightarrow\frac{1}{2a+2}-\frac{1}{2a^2-2a+2}+\frac{a}{1+a^3}>\frac{2ax}{1+a^3}\Leftrightarrow\frac{a^2-a+1-a-1+2a}{2\left(a^3+1\right)}>\frac{2ax}{1+a^3}\Leftrightarrow\frac{a^2}{2\left(1+a^3\right)}>\frac{4ax}{2\left(1+a^3\right)}\)\(\Leftrightarrow\frac{4ax}{a+1}< \frac{a^2}{a+1}\)
* Nếu \(\frac{a}{a+1}>0\)(tức là a < -1 hoặc a > 0) thì \(x< \frac{a}{4}\)
* Nếu \(\frac{a}{a+1}< 0\)(tức là -1 < a < 0) thì \(x>\frac{a}{4}\)
\(2ax^2-a-2ax^2-\left(a-x^2-ax\right)=2ax^2-a-2ax^2-a+x^2+ax=x^2+ax-2a\)
\(P=\left(\dfrac{1}{ax-2}+\dfrac{1}{ax+2}+\dfrac{2ax}{a^2x^2+4}+\dfrac{4a^3x^3}{a^2x^4}\right)\cdot\dfrac{a^4x^4+16}{a^4x^4}\)
\(=\left(\dfrac{ax+2+ax-2}{a^2x^2-4}+\dfrac{2ax}{a^2x^2+4}+\dfrac{4a^3x^3}{a^4x^4}\right)\cdot\dfrac{a^4x^4+16}{a^4x^4}\)
\(=\left(\dfrac{2ax\left(a^2x^2+4\right)+2ax\left(a^2x^2-4\right)}{a^4x^4-16}+\dfrac{4a^3x^3}{a^4x^4}\right)\cdot\dfrac{a^4x^4+16}{a^4x^4}\)
\(=\left(\dfrac{4a^3x^3}{a^4x^4-16}+\dfrac{4a^3x^3}{a^4x^4}\right)\cdot\dfrac{a^4x^4+16}{a^4x^4}\)
\(=\dfrac{8a^7x^7-64a^3x^3}{a^4x^4\left(a^4x^4-16\right)}\cdot\dfrac{a^4x^4+16}{a^4x^4}=\dfrac{\left(8a^7x^7-64a^3x^3\right)\left(a^4x^4+16\right)}{a^8x^8\left(a^4x^4-16\right)}\)
\(=\dfrac{8a^3x^3\left(a^4x^4-8\right)\left(a^4x^4+16\right)}{a^8x^8\left(a^4x^4-16\right)}=\dfrac{8\left(a^4x^4-8\right)\left(a^4x^4+16\right)}{a^5x^5\left(a^4x^4-16\right)}\)