Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/3^34=(3^3)^11 x 3
=27^11 x 3
5^20 = (5^2)^10
= 25^10
có 27^11 x3> 25^10(27>25 và 11>10)
suy ra 3^34>5^20
b/17^20=(17^2)^10
=289^10
có 289>71 ; 10>5
nên 71^5>17^20
Toán lớp 6 mà
2019/2020<15/14
2019/2020<1
mà 15/14 >1
nên suy ra 2019/2020<15/14
Ta có: \(\frac{2019}{2020}< 1< \frac{15}{14}\)
Vậy \(\frac{2019}{2020}< \frac{15}{14}\)
\(\frac{119}{153}=\frac{7}{9}\)
\(\frac{322}{345}=\frac{14}{15}\)
Học tốt
1.các p/s đó là:
1/24;24/1;2/12;12/2;3/8;8/3;4/6;6/4.
2.
a,1212/1515=4/5
b,363636/545454=2/3
k cho mình nha!
1212/1313=12/13
2424/2525=24/25
phần bù của 12/13 là:1-12/13=1/13
phần bù của 24/25: 1-24/25=1/25
vì phần bù 1/13>1/25 nên 1212/1313>2424/2525
a) \(\frac{10061006}{20122012}=\frac{10061006}{10061006\times2}=\frac{1}{2}\).
b) \(\frac{a}{35}=\frac{27}{45}\Leftrightarrow a=\frac{27\times35}{45}=\frac{3\times9\times5\times7}{5\times9}=21\).
Bài 1:
Ta có:
\(N=\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)
Do \(\hept{\begin{cases}\frac{2017}{2018+2019}< \frac{2017}{2018}\\\frac{2018}{2018+2019}< \frac{2018}{2019}\end{cases}\Rightarrow\frac{2017}{2018+2019}+\frac{2018}{2018+2019}< \frac{2017}{2018}+\frac{2018}{2019}}\)
\(\Leftrightarrow N< M\)
Vậy \(M>N.\)
Bài 2:
Ta có:
\(A=\frac{2017}{987653421}+\frac{2018}{24681357}=\frac{2017}{987654321}+\frac{2017}{24681357}+\frac{1}{24681357}\)
\(B=\frac{2018}{987654321}+\frac{2017}{24681357}=\frac{1}{987654321}+\frac{2017}{987654321}+\frac{2017}{24681357}\)
Do \(\hept{\begin{cases}\frac{2017}{987654321}+\frac{2017}{24681357}=\frac{2017}{987654321}+\frac{2017}{24681357}\\\frac{1}{24681357}>\frac{1}{987654321}\end{cases}}\)
\(\Rightarrow\frac{2017}{987654321}+\frac{2017}{24681357}+\frac{1}{24681357}>\frac{1}{987654321}+\frac{2017}{987654321}+\frac{2017}{24681357}\)
\(\Leftrightarrow A>B\)
Vậy \(A>B.\)
Bài 3:
\(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}=1-\frac{1}{2017}+1-\frac{1}{2018}+1-\frac{1}{2019}+1+\frac{3}{2016}\)
\(=1+1+1+1-\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2019}+\frac{3}{2016}\)
\(=4-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\right)\)
Do \(\hept{\begin{cases}\frac{1}{2017}< \frac{1}{2016}\\\frac{1}{2018}< \frac{1}{2016}\\\frac{1}{2019}< \frac{1}{2016}\end{cases}\Rightarrow\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}< \frac{1}{2016}+\frac{1}{2016}+\frac{1}{2016}=\frac{3}{2016}}\)
\(\Rightarrow\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\)âm
\(\Rightarrow4-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\right)>4\)
Vậy \(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}>4.\)
Bài 4:
\(\frac{1991.1999}{1995.1995}=\frac{1991.\left(1995+4\right)}{\left(1991+4\right).1995}=\frac{1991.1995+1991.4}{1991.1995+4.1995}\)
Do \(\hept{\begin{cases}1991.1995=1991.1995\\1991.4< 1995.4\end{cases}}\Rightarrow1991.1995+1991.4< 1991.1995+1995.4\)
\(\Rightarrow\frac{1991.1995+1991.4}{1991.1995+4.1995}< \frac{1991.1995+1995.4}{1991.1995+4.1995}=1\)
\(\Rightarrow\frac{1991.1999}{1995.1995}< 1\)
Vậy \(\frac{1991.1999}{1995.1995}< 1.\)
Rút gọn :\(\frac{11,2-11}{33,2}\)=\(\frac{0,2}{165\times0,2}\)=\(\frac{1}{165}\)
So sánh:
\(\frac{19}{20}\)=\(\frac{19\times28}{20\times28}\)= \(\frac{532}{560}\)
\(\frac{81}{112}\)= \(\frac{81\times5}{112\times5}=\)\(\frac{405}{560}\)
Vì \(\frac{532}{560}>\frac{405}{560}\)\(\Rightarrow\)\(\frac{19}{20}>\frac{81}{112}\)