Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x=\frac{9}{10}\)
b) \(x=\frac{-4}{3}\)
c) \(x=\frac{1}{42}\)
d) \(x=\frac{-47}{10}\)
ko có thời gian nên mình chỉ cho đáp án thôi nhé
thông cảm cho mình ngen
đúng thì k đấy
chúc bạn học giỏi
\(1\frac{13}{15}.0,75-\left(\frac{8}{15}+25\%\right).\frac{24}{47}-3\frac{12}{13}:3\)
\(=\frac{28}{15}.\frac{3}{4}-\left(\frac{8}{15}+\frac{1}{4}\right).\frac{24}{47}-\frac{51}{13}:3\)
\(=\frac{7}{5}-\frac{47}{60}.\frac{24}{47}-\frac{17}{13}\)
\(=\frac{7}{5}-\frac{2}{5}-\frac{17}{13}\)
\(=\frac{-4}{13}\)
\(4\frac{1}{3}.\left(\frac{1}{6}-\frac{1}{2}\right)\le x\le\frac{2}{3}.\left(\frac{1}{3}-\frac{1}{2}-\frac{3}{4}\right)\)
\(\Leftrightarrow\frac{13}{3}.\frac{-1}{3}\le x\le\frac{2}{3}.\frac{-11}{12}\)
\(\Leftrightarrow\frac{-13}{9}\le x\le\frac{-11}{18}\)
\(\Leftrightarrow x=-1\)
\(A=\left(1-\frac{1}{2010}\right)\left(1-\frac{2}{2010}\right)...\left(1-\frac{2010}{2010}\right)\left(1-\frac{2011}{2010}\right)\)
\(=\left(1-\frac{1}{2010}\right)\left(1-\frac{2}{2010}\right)...0\left(1-\frac{2011}{2010}\right)\)
\(=0\)
a) Ta có:
\(x-\left\{\left[-x-\left(x+3\right)\right]-\left[\left(x+2018\right)-\left(x+2019\right)\right]+21\right\}\)
\(=x-\left\{\left[-x-x-3\right]-\left[x+2018-x-2019\right]+21\right\}\)
\(=x-\left\{\left[-2x-3\right]-\left[2018-2019\right]+21\right\}\)
\(=x+2x+-3+1-21\)
\(=3x-23\)
=> \(3x-23=2020\)
\(3x=2020+23=2043\)
=> \(x=2043:3=681\)
Nhầm
\(=x-\left\{-2x-3+1+21\right\}\\ =x+2x+3-1-21\)
\(=3x-17\\ =>3x-17=2020\\ 3x=2020+17=2037\\ x=2037:3=679\)
1.\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...........\frac{49}{50}=\frac{1}{50}\)
\(P=\frac{5}{2}+\frac{4}{11}+\frac{3}{22}+\frac{1}{30}+\frac{13}{60}=\left(\frac{4}{11}+\frac{3}{22}\right)+\left(\frac{5}{2}+\frac{1}{30}+\frac{13}{60}\right)=\frac{1}{2}+\frac{11}{4}=\frac{13}{4}\)
\(Q=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{20}\right)=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{19}{20}=\frac{1.2.3....19}{2.3.4....20}=\frac{1}{20}\)
Ta có :
\(B=\frac{12}{\left(2.4\right)^2}+\frac{20}{\left(4.6\right)^2}+...+\frac{388}{\left(96.98\right)^2}+\frac{396}{\left(98.100\right)^2}\)
\(=\frac{12}{4.16}+\frac{20}{16.36}+...+\frac{388}{9216.9604}+\frac{396}{9604.10000}\)
\(=\frac{1}{4}-\frac{1}{16}+\frac{1}{16}-\frac{1}{36}+...+\frac{1}{9604}-\frac{1}{10000}\)
\(=\frac{1}{4}-\frac{1}{10000}< \frac{1}{4}\)
\(\Leftrightarrow B< \frac{1}{4}\)
B=\(\frac{12}{4.16}\)+\(\frac{20}{16.36}\)+...+\(\frac{396}{9604.10000}\)
Ta có:\(\frac{12}{4.16}\)=\(\frac{1}{4}\)-\(\frac{1}{16}\)
\(\frac{20}{16.36}\)=\(\frac{1}{16}\)-\(\frac{1}{36}\)
...
Khi đó:B=\(\frac{1}{4}\)-\(\frac{1}{16}\)+\(\frac{1}{16}\)-\(\frac{1}{36}\)+...+\(\frac{1}{9604}\)-\(\frac{1}{10000}\)=\(\frac{1}{4}\)-\(\frac{1}{10000}\)<\(\frac{1}{4}\)
Vậy: B<\(\frac{1}{4}\)
\(B=\left[1-\frac{1}{2}\right]\cdot\left[1-\frac{1}{3}\right]\cdot\left[1-\frac{1}{4}\right]\cdot...\cdot\left[1-\frac{1}{20}\right]\)
\(B=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{19}{20}\)
\(B=\frac{1\cdot2\cdot3\cdot...\cdot19}{2\cdot3\cdot4\cdot...\cdot20}=\frac{1}{20}\)