\(\frac{x^{3^{ }}-y^{3^{ }}+z^{3^{ }}+3xyz}{\left(x+y\right)^{2^{ }}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2016

AD phân tích đa thức thành nhân tử ở tử thức và mẫu thức của từng phân thức

22 tháng 11 2016

uk mik cám ơn nhé

AH
Akai Haruma
Giáo viên
30 tháng 12 2017

* Đặt tên các biểu thức theo thứ tự là A,B,C,D,E.

Câu a)

Theo hằng đẳng thức đáng nhớ ta có:

\(a^3+b^3+c^3=(a+b+c)^3-3(a+b)(b+c)(c+a)\)

\(=(a+b+c)^3-3[ab(a+b)+bc(b+c)+ca(c+a)+2abc]\)

\(=(a+b+c)^3-3[ab(a+b+c)+bc(b+c+a)+ca(c+a+b)-abc]\)

\(=(a+b+c)^3-3[(a+b+c)(ab+bc+ac)]+3abc\)

\(\Rightarrow a^3+b^3+c^3-3abc=(a+b+c)^3-3(ab+bc+ac)(a+b+c)\)

\(=(a+b+c)[(a+b+c)^2-3(ab+bc+ac)]\)

\(=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)\) (*)

Do đó:

\(A=\frac{(a+b+c)(a^2+b^2+c^2-ab-bc-ac)}{a^2+b^2+c^2-ab-bc-ac}=a+b+c\)

Câu b)

\(x^3-y^3+z^3+3xyz=x^3+(-y)^3+z^3-3x(-y)z\)

Sử dụng kết quả (*) của câu a. Với \(a=x, b=-y, c=z\)

\(\Rightarrow x^3+(-y)^3+z^3-3x(-y)z=(x-y+z)(x^2+y^2+z^2+xy+yz-xz)\)

Mặt khác xét mẫu số:

\((x+y)^2+(y+z)^2+(x-z)^2=x^2+2xy+y^2+y^2+2yz+z^2+x^2-2xz+z^2\)

\(=2(x^2+y^2+z^2+xy+yz-xz)\)

Do đó: \(B=\frac{(x-y+z)(x^2+y^2+z^2+xy+yz-xz)}{2(x^2+y^2+z^2+xy+yz-xz)}=\frac{x-y+z}{2}\)

Câu c) Sử dụng kết quả (*) của phần a:

\(x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)\)

Và mẫu số:

\((x-y)^2+(y-z)^2+(z-x)^2=2(x^2+y^2+z^2-xy-yz-xz)\)

Do đó: \(C=\frac{(x+y+z)(x^2+y^2+z^2-xy-yz-xz)}{2(x^2+y^2+z^2-xy-yz-xz)}=\frac{x+y+z}{2}\)

AH
Akai Haruma
Giáo viên
30 tháng 12 2017

Câu d)

Xét tử số:

\(a^2(b-c)+b^2(c-a)+c^2(a-b)\)

\(=a^2(b-c)-b^2[(b-c)+(a-b)]+c^2(a-b)\)

\(=(b-c)(a^2-b^2)-(b^2-c^2)(a-b)\)

\(=(b-c)(a-b)(a+b)-(b-c)(b+c)(a-b)\)

\(=(a-b)(b-c)[a+b-(b+c)]=(a-b)(b-c)(a-c)\) (1)

Xét mẫu số:

\(a^4(b^2-c^2)+b^4(c^2-a^2)+c^4(a^2-b^2)\)

\(=a^4(b^2-c^2)-b^4[(b^2-c^2)+(a^2-b^2)]+c^4(a^2-b^2)\)

\(=(a^4-b^4)(b^2-c^2)-(b^4-c^4)(a^2-b^2)\)

\(=(a^2-b^2)(a^2+b^2)(b^2-c^2)-(b^2-c^2)(b^2+c^2)(a^2-b^2)\)

\(=(a^2-b^2)(b^2-c^2)[a^2+b^2-(b^2+c^2)]\)

\(=(a^2-b^2)(b^2-c^2)(a^2-c^2)\)

\(=(a-b)(b-c)(a-c)(a+b)(b+c)(c+a)\)(2)

Từ (1)(2) suy ra \(D=\frac{1}{(a+b)(b+c)(c+a)}\)

Câu e)

Theo phần d ta có:

\(TS=(a-b)(b-c)(a-c)\)

\(MS=ab^2-ac^2-b^3+bc^2\)

\(=b^2(a-b)-c^2(a-b)=(a-b)(b^2-c^2)=(a-b)(b-c)(b+c)\)

Do đó: \(E=\frac{(a-b)(b-c)(a-c)}{(a-b)(b-c)(b+c)}=\frac{a-c}{b+c}\)

20 tháng 11 2017

Rút gọn phân thứcRút gọn phân thứcRút gọn phân thứcRút gọn phân thứcRút gọn phân thức

20 tháng 11 2017

Rút gọn phân thức