Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=1-5+5^2-5^3+...+5^{2016}-5^{2017}\) (1)
\(\Rightarrow5B=5-5^2+5^3-5^4+...+5^{2017}-5^{2018}\) (2)
Cộng vế với vế của (1) và (2):
\(6B=1+5-5+5^2-5^2+5^3-5^3+...+5^{2017}-5^{2017}-5^{2018}\)
\(\Rightarrow6B=1-5^{2018}\)
\(\Rightarrow B=\dfrac{1-5^{2018}}{6}\)
Ta có:
f ( 1 ) = \(a_0+a_1+....+a_{2017}\)
mà f ( x) = \(\left(x+2\right)^{2017}\)
=> \(S=f\left(1\right)=3^{2017}\)
Câu hỏi của Nguyễn Minh Vũ - Toán lớp 7 - Học toán với OnlineMath
Bạn tham khảo ở link trên.
a.Ta có:
\(5^3=125\)
\(5^5=3125\)
\(5^7=78125\)
....
\(5^{2n+1}=\left(...125\right)\)
\(\Rightarrow5^{2017}=5^{1008.2+1}=\left(...125\right)\)
a) Đặt \(A=2^{2016}-2^{2015}+2^{2014}-2^{2013}+...+2^2-2^1\)
\(\Rightarrow2A=2^{2017}-2^{2016}+2^{2015}-2^{2014}+...+2^3-2^2\)
\(\Rightarrow2A+A=\left(2^{2017}-2^{2015}+2^{2014}-2^{2013}+...+2^3-2^2\right)+\left(2^{2016}-2^{2015}+2^{2014}-2^{2013}+...+2^2+2^1\right)\)
\(\Rightarrow3A=2^{2017}+1\)
\(\Rightarrow A=\frac{2^{2017}+1}{3}\)
b) Đặt \(B=3^{1000}-3^{999}+3^{998}-3^{997}+...+3^2-3^1+3^0\)
\(\Rightarrow3B=3^{1001}-3^{1000}+3^{999}-3^{997}+...+3^3-3^2+3^1\)
\(\Rightarrow3B+B=\left(3^{1001}-3^{1000}+3^{999}-3^{998}+...+3^3-3^2+3^1\right)+\left(3^{1000}-3^{999}+3^{998}-3^{997}+...+3^2-3^1+3^0\right)\)
\(\Rightarrow4B=3^{1001}+3^0\)
\(\Rightarrow B=\frac{3^{1001}+1}{4}\)
a) Đặt A = 22016 - 22015 + 22014 - 22013 + ... + 22 - 21
2A = 22017 - 22016 + 22015 - 22014 + ... + 23 - 22
2A + A = (22017 - 22016 + 22015 - 22014 + ... + 23 - 22) + (22016 - 22015 + 22014 - 22013 + ... + 22 - 21)
3A = 22017 - 21
3A = 22017 - 2
\(A=\frac{2^{2017}-2}{3}\)
b) lm tương tự câu a
\(M=\left(2018^{2019}+2018^{2018}+...+2018^2+2018\right)2017+1\)
Gọi \(A=2018^{2019}+2018^{2018}+...+2018^2+2018\)
\(\Rightarrow2018A=2018^{2020}+2018^{2019}+...+2018^3+2018^2\)
\(\Rightarrow2018A-A=2018^{2020}-2018\)
\(\Rightarrow2017A=2018^{2020}-2018\)
\(\Rightarrow A=\left(2018^{2020}-2018\right)\div2017\)
\(\Rightarrow M=\left(2018^{2020}-2018\right)\div2017.2017+1\)
\(\Rightarrow M=2018^{2020}-2018+1\)
\(\Rightarrow M=2018^{2020}-2017\)
\(A=2^{2017}-2^{2016}-2^{2015}-..........-2^5\)
\(\Leftrightarrow A=2^{2017}-\left(2^{2016}+2^{2015}+..........+2^5\right)\)
Đặt :
\(B=2^{2016}+2^{2017}+...........+2^5\)
\(\Leftrightarrow2B=2^{2017}+2^{2016}+..........+2^6\)
\(\Leftrightarrow2B-B=\left(2^{2017}+2^{2016}+.......+2^6\right)-\left(2^{2016}+2^{2015}+......+2^5\right)\)
\(\Leftrightarrow B=2^{2017}-2^5\)
\(\Leftrightarrow A=2^{2017}-\left(2^{2017}-2^5\right)\)
\(\Leftrightarrow A=2^{2017}-2^{2017}-2^5\)
\(\Leftrightarrow A=0+2^5\)
\(\Leftrightarrow A=32\)
A = 22017 - 22016 - 22015 - … - 25
= 22017 - (22016 + 22015 + … + 25)
Đặt E = 22016 + 22015 + … + 25
2E = 22017 + 22016 + … + 26
2E - E =(22017 - 22016 - … - 26) - (22016 - 22015 - … - 25)
E = 22017 - 25
=> A = 22017 - (22017 - 25)
= 22017 - 22017 + 25
= 32