Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\)
\(\Leftrightarrow A^3=9+4\sqrt{5}+9-4\sqrt{5}+3\cdot A\)
=>A^3-3A-18=0
=>A=3
b: \(B=\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}\)
=>\(B^3=5\sqrt{2}+7-5\sqrt{2}+7+3B\)
=>B^3-3B-14=0
=>B=2,82
c: \(C^3=20+14\sqrt{2}-14\sqrt{2}+20-6C\)
=>C^3+6C-40=0
=>C=2,84
\(P=\dfrac{\sqrt{2}\left(3+\sqrt{5}\right)}{\sqrt{2}\left(2\sqrt{2}+\sqrt{3+\sqrt{5}}\right)}+\dfrac{\sqrt{2}\left(3-\sqrt{5}\right)}{\sqrt{2}\left(2\sqrt{2}-\sqrt{3-\sqrt{5}}\right)}\)
\(=\dfrac{3\sqrt{2}+\sqrt{10}}{4+\sqrt{6+2\sqrt{5}}}+\dfrac{3\sqrt{2}-\sqrt{10}}{4-\sqrt{6-2\sqrt{5}}}\)
\(=\dfrac{3\sqrt{2}+\sqrt{10}}{5+\sqrt{5}}+\dfrac{3\sqrt{2}-\sqrt{10}}{5-\sqrt{5}}\)
\(=\dfrac{\left(3\sqrt{2}+\sqrt{10}\right)\left(5-\sqrt{5}\right)+\left(3\sqrt{2}-\sqrt{10}\right)\left(5+\sqrt{5}\right)}{20}\)
\(=\dfrac{15\sqrt{2}-3\sqrt{10}+5\sqrt{10}-5\sqrt{2}+15\sqrt{2}+3\sqrt{10}-5\sqrt{10}-5\sqrt{2}}{20}\)
\(=\dfrac{30\sqrt{2}-10\sqrt{2}}{20}=\dfrac{20\sqrt{2}}{20}=\sqrt{2}\)
\(\)
\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+2\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=1+\frac{\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=1+\sqrt{2}\)
Mình rút gọn như sau:
\(\left(\sqrt{3-\sqrt{5}}\right).\left(\sqrt{10}-\sqrt{2}\right).\left(3+\sqrt{5}\right)\)
\(=\sqrt{\left(\sqrt{\frac{5}{2}}-\sqrt{\frac{1}{2}}\right)^2}.\left(3\sqrt{10}+5\sqrt{2}-3\sqrt{2}-\sqrt{10}\right)\)
\(=\left(\sqrt{\frac{5}{2}}-\sqrt{\frac{1}{2}}\right).\left(2\sqrt{10}+2\sqrt{2}\right)\)
\(=10+2\sqrt{5}-2\sqrt{5}-2\)
\(=8\)
(Chúc bạn học giỏi và tíck cho mìk vs nhá!)
Điều kiện : x>=0
\(\sqrt{x}+\frac{\sqrt[3]{2-\sqrt{3}}.\sqrt[6]{7+4\sqrt{3}}-x}{\sqrt[4]{9-4\sqrt{5}}.\sqrt{2+\sqrt{5}}+\sqrt{x}}\)
\(=\sqrt{x}+\frac{\sqrt[3]{2-\sqrt{3}}.\sqrt[6]{\left(2+\sqrt{3}\right)^2}-x}{\sqrt[4]{\left(\sqrt{5}-2\right)^2}.\sqrt{2+\sqrt{5}}+\sqrt{x}}\)
\(=\sqrt{x}+\frac{\sqrt[3]{2-\sqrt{3}}.\sqrt[3]{2+\sqrt{3}}-x}{\sqrt{\sqrt{5}-2}.\sqrt{2+\sqrt{5}}+\sqrt{x}}\)
\(=\sqrt{x}+\frac{\sqrt[3]{1}-x}{\sqrt{1}+\sqrt{x}}=\sqrt{x}+\frac{1-x}{1+\sqrt{x}}=\sqrt{x}+\frac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}{1+\sqrt{x}}\)
\(=\sqrt{x}+1-\sqrt{x}=1\)
1) \(\frac{\sqrt{6-2\sqrt{5}}}{2-2\sqrt{5}}=\frac{\sqrt{\left(\sqrt{5}-1\right)^2}}{2\left(1-\sqrt{5}\right)}=\frac{\sqrt{5}-1}{2\left(1-\sqrt{5}\right)}=-\frac{1}{2}\)
2) \(\frac{\sqrt{7-4\sqrt{3}}}{1-\sqrt{3}}=\frac{\sqrt{\left(2-\sqrt{3}\right)^2}}{1-\sqrt{3}}=\frac{2-\sqrt{3}}{1-\sqrt{3}}\)