Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) \(\frac{36^7}{2^{15}.27^5}=\frac{\left(2^2.3^2\right)^7}{2^{15}.\left(3^3\right)^5}=\frac{2^{14}.3^{14}}{2^{15}.3^{15}}=\frac{1.1}{2.3}=\frac{1}{6}\)
h) \(\frac{2^{18}.9^4}{6^6.8^4}=\frac{2^{18}.\left(3^2\right)^4}{\left(2.3\right)^6.\left(2^3\right)^4}=\frac{2^{18}.3^8}{2^6.3^6.2^{12}}=\frac{2^{18}.3^8}{2^{18}.3^6}=\frac{1.3^2}{1.1}=9\)
o) \(\frac{3^3+3.6^2+6^3}{13}=\frac{3^3+6^2\left(3+6\right)}{13}=\frac{3^3+6^2.3^2}{13}\)
\(=\frac{3^2\left(3+6^2\right)}{13}=\frac{9.3.13}{13}=\frac{9.3.1}{1}=27\)
\(\frac{2^7.3^6}{6^5.8^2}=\frac{2^7.3^6}{\left(2.3\right)^5.\left(2^3\right)^2}=\frac{2^7.3^6}{2^5.3^5.2^6}=\frac{2^7.3^6}{2^{11}.3^5}=\frac{3}{2^4}=\frac{3}{16}\)
1. sai dấu nhé
2.a, \(\frac{45^{10}.5^{20}}{75^{15}}=\frac{\left(3^2.5\right)^{10}.5^{20}}{\left(5^2.3\right)^{15}}=\frac{3^{20}.5^{30}}{5^{30}.3^{15}}=3^5=243\)
b, \(\frac{\left(0,8\right)^5}{\left(0,4\right)^6}=\frac{\left(\frac{4}{5}\right)^5}{\left(\frac{2}{5}\right)^6}=\frac{\left(\frac{2}{5}\cdot2\right)^5}{\left(\frac{2}{5}\right)^6}=\frac{\left(\frac{2}{5}\right)^5\cdot2^5}{\left(\frac{2}{5}\right)^5\cdot\frac{2}{5}}=2^5\div\frac{2}{5}=32\cdot\frac{5}{2}=80\)
c, \(\frac{2^{15}.9^4}{6^6.8^3}=\frac{2^{15}.3^8}{2^6.3^6.2^9}=\frac{2^{15}.3^2}{2^{15}}=3^2=9\)
a.
\(\frac{45^{10}\times5^{20}}{75^{15}}=\frac{\left(3^2\times5\right)^{10}\times5^{20}}{\left(3\times5^2\right)^{15}}=\frac{3^{20}\times5^{10}\times5^{20}}{3^{15}\times5^{30}}=3^5=243\)
b.
\(\frac{\left(0,8\right)^5}{\left(0,4\right)^6}=\frac{\left(0,8\right)^5}{\left(0,4\right)^5}\times\frac{1}{\left(0,4\right)}=\left(\frac{0,8}{0,4}\right)^5\times\frac{1}{\frac{4}{10}}=2^5\times\frac{5}{2}=2^4\times5=16\times5=80\)
c.
\(\frac{2^{15}\times9^4}{6^6\times8^3}=\frac{2^{15}\times\left(3^2\right)^4}{\left(2\times3\right)^6\times\left(2^3\right)^3}=\frac{2^{15}\times3^8}{2^6\times3^6\times2^9}=3^2=9\)
Chúc bạn học tốt ^^
a.
\(\frac{2^7\times9^3}{6^5\times8^2}=\frac{2^7\times\left(3^2\right)^3}{\left(2\times3\right)^5\times\left(2^3\right)^2}=\frac{2^7\times3^6}{2^5\times3^5\times2^6}=\frac{3}{2^4}=\frac{3}{16}\)
b.
\(\frac{6^3+3\times6^2+3^3}{-13}=\frac{\left(2\times3\right)^3+3\times\left(3\times2\right)^2+3^3}{-13}=\frac{2^3\times3^3+3\times3^2\times2^2+3^3}{-13}=\frac{8\times3^3+3^3\times4+3^3}{-13}\)\(=\frac{3^3\times\left(8+4+1\right)}{-13}=\frac{27\times13}{-13}=-27\)
c.
\(\frac{5^4\times20^4}{25^5\times4^5}=\frac{\left(5\times20\right)^4}{\left(25\times4\right)^5}=\frac{100^4}{100^5}=\frac{1}{100}\)
d.
\(\left(\frac{5^4-5^3}{125^4}\right)=\frac{5^3\times\left(5-1\right)}{\left(5^3\right)^4}=\frac{5^3\times4}{5^{12}}=\frac{4}{5^9}\)
a)\(\frac{2^7.9^3}{6^5.8^2}=\frac{2^7.\left(3^2\right)^3}{2^5.3^5.\left(2^3\right)^2}=\frac{2^7.3^6}{2^5.3^5.2^6}=\frac{3}{2^4}\)
b)\(\frac{6^3+3.6^2+3^3}{-13}=\frac{6.6^2+3.6^2+3^3}{-13}=\frac{6^2.\left(6+3\right)+3^3}{-13}=\frac{6^2.9+3^3}{-13}=\frac{6^2.3^2+3.3^2}{-13}=\frac{3^2.\left(6^2+3\right)}{-13}=\frac{3^2.39}{-13}=3^2.\left(-3\right)=-27\)
c)\(\frac{5^4.20^4}{25^5.4^5}=\frac{100^4}{100^5}=\frac{1}{100}\)
a)
\(\Rightarrow A=\frac{\frac{1}{11}-\frac{1}{13}-\frac{1}{17}}{5\left(\frac{1}{11}-\frac{1}{13}-\frac{1}{17}\right)}+\frac{2\left(\frac{1}{3}-\frac{1}{9}-\frac{1}{27}+\frac{1}{81}\right)}{7\left(\frac{1}{3}-\frac{1}{9}-\frac{1}{27}+\frac{1}{81}\right)}\)
\(\Rightarrow A=\frac{1}{5}+\frac{2}{7}\)
\(\Rightarrow A=\frac{17}{35}\)
b)
\(\Rightarrow B=5\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+....+\frac{1}{56}-\frac{1}{61}\right)\)
\(\Rightarrow B=5\left(\frac{1}{11}-\frac{1}{61}\right)\)
\(\Rightarrow B=5.\frac{50}{671}=\frac{250}{671}\)
c)
\(\Rightarrow C=1-\left(\frac{1}{1.3}+\frac{1}{2.3}+\frac{1}{2.5}+....+\frac{1}{49.25}\right)\)
\(\Rightarrow C=1-2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{49.50}\right)\)
\(\Rightarrow C=1-2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{49}-\frac{1}{50}\right)\)
\(\Rightarrow C=1-1-\frac{1}{25}\)
\(\Rightarrow C=\frac{1}{25}\)
b)\(\frac{1}{6}\)
c)\(\frac{3}{16}\)
e)243
a)\(\frac{36^7}{2^{15}\cdot27^5}=\frac{36^7}{\left(2^3\right)^5\cdot27^5}\)
\(=\frac{36^7}{\left(8\cdot27\right)^5}=\frac{36^7}{216^5}\)
\(=\frac{36^7}{36^5\cdot6^5}=\frac{36^5\cdot36^2}{36^5\cdot6^5}\)
\(=\frac{36^2}{6^5}=\frac{\left(6^2\right)^2}{6^5}=\frac{6^4}{6^5}=\frac{1}{6}\)
\(\)