K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2023

\(=\left(\dfrac{x+9}{x-9}-\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{x-9}\right).\dfrac{x-3\sqrt{x}}{\sqrt{x}}\\ =\left(\dfrac{x+9-x+3\sqrt{x}}{x-9}\right).\dfrac{x-3\sqrt{x}}{\sqrt{x}}\\ =\dfrac{3\left(3+\sqrt{x}\right)}{\left(\sqrt{x}-3\right)\left(3+\sqrt{x}\right)}.\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\sqrt{x}}\\ =3\)

23 tháng 8 2023

ĐK phải là: \(x>0;x\ne9\) nha=))

4 tháng 8 2021

Với x > 0 ; x \(\ne\)

a, \(B=\left(\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{x+9}{9-x}\right):\left(\frac{3\sqrt{x}+1}{x-3\sqrt{x}}+\frac{2}{\sqrt{x}}\right)\)

\(=\left(\frac{\sqrt{x}\left(\sqrt{x}-3\right)-x-9}{x-9}\right):\left(\frac{3\sqrt{x}+1+2\left(\sqrt{x}-3\right)}{x-3\sqrt{x}}\right)\)

\(=\left(\frac{-3\sqrt{x}-9}{x-9}\right):\left(\frac{5\sqrt{x}-5}{\sqrt{x}\left(\sqrt{x}-3\right)}\right)=\frac{-3}{\sqrt{x}-3}.\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{5\left(\sqrt{x}-1\right)}=\frac{-3\sqrt{x}}{5\left(\sqrt{x}-1\right)}\)

b, Ta có : \(B< 0\Rightarrow\frac{-3\sqrt{x}}{5\left(\sqrt{x}-1\right)}< 0\Rightarrow\sqrt{x}-1>0\Leftrightarrow x>1\)

Kết hợp vói đk vậy x > 1 ; x \(\ne\)9

1 tháng 8 2018

a, Rút gọn P

\(\dfrac{3}{\sqrt{x}+3}-\left(\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2-\sqrt{x}}{\sqrt{x}+3}\right)\)

\(\Leftrightarrow\left(1-\dfrac{\sqrt{x}\left(\sqrt{x-3}\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+3\right)}\right):\left(\dfrac{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}{x+3\sqrt{x}-2\sqrt{x}-6}-\dfrac{\sqrt{x}-3}{-\left(\sqrt{x}-2\right)\sqrt{x}+3}\right)\)

\(\Leftrightarrow\left(1-\dfrac{\sqrt{x}}{\sqrt{x}+3}\right):\left(\dfrac{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}{\sqrt{x}\left(\sqrt{x}+3\right)}+\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2-\sqrt{x}}{\sqrt{x}+3}\right)\)

\(\Leftrightarrow\dfrac{3}{\sqrt{x}+3}:\left(\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2-\sqrt{x}}{\sqrt{x}+3}\right)\)

\(\Leftrightarrow\dfrac{3}{\sqrt{x}+3}:\dfrac{\left(\sqrt{x}+3\right).\left(3-\sqrt{x}\right).\left(x+\sqrt{3}\right).\left(\sqrt{x}-3\right)-\left(\sqrt{x}-2\right).\left(2-\sqrt{x}\right)}{\left(\sqrt{x}-2\right).\left(\sqrt{x}+3\right)}\)

\(\Leftrightarrow\dfrac{3}{\sqrt{x}+3}:\dfrac{\left(3+\sqrt{x}\right).\left(3-\sqrt{x}\right)+x-9-\left(2\sqrt{x}-x-4+2\sqrt{x}\right)}{\left(\sqrt{x}-2\right).\left(\sqrt{x}+3\right)}\)

\(\Leftrightarrow\dfrac{3}{\sqrt{x}+3}:\dfrac{9-x+x-9-\left(4\sqrt{x}-x-4\right)}{\left(\sqrt{x}-2\right).\left(\sqrt{x}+3\right)}\)

\(\Leftrightarrow\dfrac{3}{\sqrt{x}+3}:\dfrac{-4\sqrt{x}+x+4}{\left(\sqrt{x}-2\right).\left(\sqrt{x}+3\right)}\)

\(\Leftrightarrow\dfrac{3}{\sqrt{x}+3}:\dfrac{x-4\sqrt{x}+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)

\(\Leftrightarrow\dfrac{3}{\sqrt{x}+3}:\dfrac{\left(\sqrt[]{x}-2\right)^2}{\left(\sqrt{x}-2\right).\left(\sqrt{x}+3\right)}\)

\(\Leftrightarrow\dfrac{3}{\sqrt{x}+3}:\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\)

\(\Leftrightarrow\dfrac{3}{\sqrt{x}+3}.\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\)

\(\Leftrightarrow3.\dfrac{1}{\sqrt{x}-2}\)

\(\Leftrightarrow\)\(\dfrac{3}{\sqrt{x}-2}\)

25 tháng 4 2017

a)C=\(\dfrac{9}{\sqrt{x}+3}\)

b)\(x>36\)

27 tháng 5 2017

Ôn tập Căn bậc hai. Căn bậc ba

Ôn tập Căn bậc hai. Căn bậc ba

a)

\(B=\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{x+9}{9-x}\right):\left(\dfrac{2\sqrt{x}+1}{x-3\sqrt{x}}-\dfrac{1}{\sqrt{x}}\right)\\ B=\dfrac{\sqrt{x}\left(3-\sqrt{x}\right)+x+9}{9-x}:\dfrac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{x-3\sqrt{x}}\\ B=\dfrac{\left[\sqrt{x}\left(3-\sqrt{x}\right)\right].\left[\sqrt{x}\left(3-\sqrt{x}+x+9\right)\right]}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\\ B=\dfrac{2.\left(3-\sqrt{x}\right)\left(\sqrt{x}+2\right)}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}=2\dfrac{\sqrt{x}+2}{3+\sqrt{x}}\)

b)

\(B< 1\Leftrightarrow2\dfrac{\sqrt{x}+2}{3+\sqrt{x}}< 1\\ \Leftrightarrow\dfrac{\sqrt{x}+2}{3+\sqrt{x}}< 1\\ \dfrac{\sqrt{x}+2}{3+\sqrt{x}}-1< 0\\ \dfrac{\sqrt{x}+2-3-\sqrt{x}}{3+\sqrt{x}}< 0\\ \dfrac{-1}{3+\sqrt{x}}< 0\\ \Leftrightarrow3+\sqrt{x}>0\Rightarrow x\ge0\left(thõa\:mãn\right)\)

vậy khi \(x\ge0\) thì B<1

24 tháng 7 2018

Ta có :

a , \(M=2\left(\dfrac{\sqrt{x}}{\sqrt{x}+3}-\dfrac{x+9}{x-9}\right):\left[\dfrac{3\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-3\right)}-\dfrac{\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}-3\right)}\right]\)

\(M=\left[\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{x-9}-\dfrac{2\left(x+9\right)}{x-9}\right]:\left[\dfrac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\right]\)

\(M=\left(\dfrac{2x-6\sqrt{x}-2x-18}{x-9}\right).\left[\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\sqrt{x}+4}\right]\)

\(M=\dfrac{-6\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(2\sqrt{x}+4\right)}\)

\(M=\dfrac{-6\sqrt{x}}{2\left(\sqrt{x}+2\right)}\)

\(M=-\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)

b , mik ko chắc chắn nên mik chưa làm nhé !

a: \(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}+3}-\dfrac{x+9}{x-9}\right):\left(\dfrac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\right)\)

\(=\dfrac{x-3\sqrt{x}-x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\sqrt{x}+4}\)

\(=\dfrac{-3\left(\sqrt{x}+3\right)}{\sqrt{x}+3}\cdot\dfrac{1}{2\sqrt{x}+4}=\dfrac{-3}{2\sqrt{x}+4}\)

b: Để A<-1 thì A+1<0

\(\Leftrightarrow\dfrac{-3+2\sqrt{x}+4}{2\sqrt{x}+4}< 0\)

\(\Leftrightarrow\dfrac{2\sqrt{x}+1}{2\sqrt{x}+4}< 0\)(vô lý)

Vậy: \(x\in\varnothing\)

26 tháng 10 2022

a:

Sửa đề: \(C=\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{x+9}{9-x}\right):\left(\dfrac{3\sqrt{x}+1}{x-3\sqrt{x}}-\dfrac{1}{\sqrt{x}}\right)\)

 \(C=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)-x-9}{x-9}:\dfrac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\)

\(=\dfrac{x-3\sqrt{x}-x-9}{x-9}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\sqrt{x}+4}\)

\(=\dfrac{-3\left(\sqrt{x}+3\right)}{\sqrt{x}+3}\cdot\dfrac{\sqrt{x}}{2\sqrt{x}+4}\)

\(=-\dfrac{3\sqrt{x}}{2\sqrt{x}+4}\)

b: Để C<-1 thì C+1<0

=>-3 căn x+2 căn x+4<0

=>-căn x<-4

=>x>16

31 tháng 8 2023

a) \(M=\left(\dfrac{3}{\sqrt{x}+3}+\dfrac{x+9}{x-9}\right):\left(\dfrac{2\sqrt{x}-5}{x-3\sqrt{x}}-\dfrac{1}{\sqrt{x}}\right)\)

\(=\dfrac{3.\left(\sqrt{x}-3\right)+x+9}{\left(\sqrt{x}-3\right).\left(\sqrt{x}+3\right)}:\dfrac{2\sqrt{x}-5-\left(\sqrt{x}-3\right)}{\sqrt{x}.\left(\sqrt{x}-3\right)}\)

\(=\dfrac{x+3\sqrt{x}}{\left(\sqrt{x}-3\right).\left(\sqrt{x}+3\right)}:\dfrac{\sqrt{x}-2}{\sqrt{x}.\left(\sqrt{x}-3\right)}\)

\(=\dfrac{\sqrt{x}.\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right).\left(\sqrt{x}+3\right)}.\dfrac{\sqrt{x}.\left(\sqrt{x}-3\right)}{\sqrt{x}-2}=\dfrac{x}{\sqrt{x}-2}\)

b) \(M< 0\Leftrightarrow\sqrt{x}-2< 0\Leftrightarrow x< 4\)

Kết hợp điều kiện ta được \(0< x< 4\) thì M < 0

c) Từ câu b ta có M < 0 \(\Leftrightarrow0< x< 4\)

nên \(x\inℤ\) để M nguyên âm <=> \(x\in\left\{1;2;3\right\}\)

Thay lần lượt các giá trị vào M được x = 1 thỏa 

d) \(M=\dfrac{x}{\sqrt{x}-2}=\sqrt{x}+2+\dfrac{4}{\sqrt{x}-2}=\left(\sqrt{x}-2+\dfrac{4}{\sqrt{x}-2}\right)+4\)

Vì x > 4 nên \(\sqrt{x}-2>0\)

Áp dụng BĐT Cauchy ta có 

\(M=\left(\sqrt{x}-2+\dfrac{4}{\sqrt{x}-2}\right)+4\ge2\sqrt{\left(\sqrt{x}-2\right).\dfrac{4}{\sqrt{x}-2}}+4=8\)

Dấu "=" xảy ra khi \(\sqrt{x}-2=\dfrac{4}{\sqrt{x}-2}\Leftrightarrow x=16\left(tm\right)\)

31 tháng 8 2023

1) \(M=\left(\dfrac{3}{\sqrt[]{x}+3}+\dfrac{x+9}{x-9}\right):\left(\dfrac{2\sqrt[]{x}-5}{x-3\sqrt[]{x}}-\dfrac{1}{\sqrt[]{x}}\right)\left(x>0;x\ne9\right)\)

\(\Leftrightarrow M=\left(\dfrac{3\left(\sqrt[]{x}-3\right)}{\left(\sqrt[]{x}+3\right)\left(\sqrt[]{x}-3\right)}+\dfrac{x+9}{x-9}\right):\left(\dfrac{2\sqrt[]{x}-5}{\sqrt[]{x}\left(\sqrt[]{x}-3\right)}-\dfrac{1}{\sqrt[]{x}}\right)\)

\(\Leftrightarrow M=\left(\dfrac{3\sqrt[]{x}-9+x+9}{x-9}\right):\left(\dfrac{2\sqrt[]{x}-5-\left(\sqrt[]{x}-3\right)}{\sqrt[]{x}\left(\sqrt[]{x}-3\right)}\right)\)

\(\Leftrightarrow M=\left(\dfrac{3\sqrt[]{x}+x}{x-9}\right):\left(\dfrac{2\sqrt[]{x}-5-\sqrt[]{x}+3}{\sqrt[]{x}\left(\sqrt[]{x}-3\right)}\right)\)

\(\Leftrightarrow M=\left(\dfrac{\sqrt[]{x}\left(\sqrt[]{x}+3\right)}{x-9}\right):\left(\dfrac{\sqrt[]{x}-2}{\sqrt[]{x}\left(\sqrt[]{x}-3\right)}\right)\)

\(\Leftrightarrow M=\left(\dfrac{\sqrt[]{x}}{\sqrt[]{x}-3}\right):\left(\dfrac{\sqrt[]{x}-2}{\sqrt[]{x}\left(\sqrt[]{x}-3\right)}\right)\)

\(\Leftrightarrow M=\dfrac{\sqrt[]{x}}{\sqrt[]{x}-3}.\dfrac{\sqrt[]{x}\left(\sqrt[]{x}-3\right)}{\sqrt[]{x}-2}\)

\(\Leftrightarrow M=\dfrac{x}{\sqrt[]{x}-2}\)

2) Để \(M< 0\) khi và chỉ chi

\(M=\dfrac{x}{\sqrt[]{x}-2}< 0\left(1\right)\)

Nghiệm của tử là \(x=0\)

Nghiệm của mẫu \(\sqrt[]{x}-2=0\Leftrightarrow\sqrt[]{x}=2\Leftrightarrow x=4\)

Lập bảng xét dấu... ta được

\(\left(1\right)\Leftrightarrow0< x< 4\)