K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2017

Ta có công thức :

\(1+\frac{1}{n\left(n+2\right)}=\frac{n\left(n+2\right)+1}{n\left(n+2\right)}=\frac{n^2+2n+1}{n\left(n+2\right)}=\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)

Áp dụng vào bài toán ta được :

\(C=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}..........\frac{2015^2}{2014.2016}\)

\(=\frac{\left(2.3.4....2015\right)\left(2.3.4....2015\right)}{\left(1.2.3...2014\right)\left(3.4.5.....2016\right)}\)

\(=\frac{2015.2}{2016}=\frac{2015}{1008}\)

19 tháng 3 2017

=1(1/1*3*(1/2*4)*...*(1+1/2014*2016)

=1/2(2+2/1*3)+(2+2/2*4)*...(2+2/2014*2016)

=1/2(2+1/1-1/3)...(2+1/2014-1/2016)

=1/2*(1/1-1/2016)

=3023/4032

17 tháng 5 2017

=1/2.(1+1/1.3).(1+1/2.4).(1+1/3.5)...(1+1/2014.2016)

=1/2.(1+1/1-1/3).(1+1/3-1/5)...(1+1/2014-1/2016)

=1/2.1+(1/1-1/2016)

=1/2.2015/2016

=2015/4032

13 tháng 7 2017

sai roi

8 tháng 4 2016

\(A=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{2014.2016}\right)\)

\(A=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}...\frac{2015.2015}{2014.2016}\)

\(A=\frac{2.3.4...2015}{1.2.3...2014}.\frac{2.3.4...2015}{3.4.5...2016}\)

\(A=2015.\frac{1}{1008}\)

\(A=\frac{2015}{1008}\)

8 tháng 4 2016

Ta có :

\(A=\frac{2^2}{1.3}.\frac{3^2}{2.4}............\frac{2015^2}{2014.2016}\)\(\frac{2.2}{1.3}.\frac{3.3}{2.4}...........\frac{2015.2015}{2014.2016}=\frac{2.2015}{2016}=\frac{2015}{1008}\)

k cho mình nha

1 tháng 3 2017

Ta có công thức : với n thuộc N* thì ta luôn có :

\(1+\frac{1}{n\left(n+2\right)}=\frac{n\left(n+2\right)+1}{n\left(n+2\right)}=\frac{n^2+2n+1}{n\left(n+2\right)}=\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)

Áp dụng vào bài toán ta được :

\(P=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right).....\left(1+\frac{1}{49.51}\right)+\frac{2}{51}\)

\(=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.......\frac{50^2}{49.51}+\frac{2}{51}\)

\(=\frac{\left(2.3.4...50\right)\left(2.3.4...50\right)}{\left(1.2.3...49\right)\left(3.4.5....51\right)}+\frac{2}{51}\)

\(=\frac{50.2}{51}+\frac{2}{51}=\frac{102}{51}=2\)

Có \(\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)..........\)\(\left(1+\frac{1}{2014.2016}\right)\)

=\(\left(\frac{1.3}{1.3}+\frac{1}{1.3}\right)\left(\frac{2.4}{2.4}+\frac{1}{2.4}\right)....\left(\frac{2014.2016}{2014.2016}+\frac{1}{2014.2016}\right)\)

=\(\left(\frac{2^2-1}{1.3}+\frac{1}{2.4}\right)\left(\frac{3^2-1}{2.4}+\frac{1}{2.4}\right)......\left(\frac{2015^2-1}{2014.2016}+\frac{1}{2014.2016}\right)\)

=\(\frac{2.2}{1.3}.\frac{3.3}{2.4}......\frac{2015.2015}{2014.2016}\)

=\(\frac{2.2.3.3.....2015.2015}{1.3.2.4....2014.2015}\)

=\(\frac{\left(2.3...2015\right).\left(2.3.....2015\right)}{\left(1.2....2014\right).\left(3.4.....2016\right)}=\frac{2015.2}{2016}=\frac{4030}{2016}\)

13 tháng 2 2018

\(B=2016.\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right).\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{2014.2016}\right)\)

\(2016.\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}....\frac{2015^2}{2014.2016}\)

\(2016.\frac{2.3.4....2015}{1.2.3.4.5...2014.2015.2016}.\frac{2.3.4....2015}{3.4.5...2014}\)

\(2016.\frac{1}{2016}.2.2015=2.2015=4030\)