Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= 1/2+1/22+1/23+1/24+.....+1/22019
2A= 1+1/2+1/22+1/23+1/24+.....+1/22018
2A-A=(1+1/2+1/22+1/23+1/24+.....+1/22018)-(1/2+1/22+1/23+1/24+.....+1/22019)
A=1-1/22019
\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\)
\(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2011}}\)
\(2A-A=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\right)\)
\(2A-A=2-\frac{1}{2^{2012}}\Rightarrow A=2-\frac{1}{2^{2012}}\)
\(A=\frac{2^{2013}}{2^{2012}}-\frac{1}{2^{2012}}=\frac{2^{2012}+1}{2^{2012}}\)
A= 1+ 1/2 + 1/22 + ... + 1/22012
(1/2)A= 1/2+1/22+...+1/22013
A-(1/2)A= (1+ 1/2 + 1/22 + ... + 1/22012) - ( 1/2+1/22+...+1/22013)
(1/2)A = 1 - 1/22013
A= (1- 1/22013) : 1/2
A= 2 - 1/22012
A = 1 + 1/22+1/23+...+1/22015
(1-1/2) A = (1-1/2) (1+1/22+1/23+...+1/22015) = 1 - 1/22016
A = 2 *( 1 -1/22016) = 2 -1/22015
A = 1 + 1/22+1/23+...+1/22015
(1-1/2) A = (1-1/2) (1+1/22+1/23+...+1/22015) = 1 - 1/22016
A = 2 *( 1 -1/22016) = 2 -1/22015
\(A=1+2^1+2^2+...+2^{2017}\)
\(2A=2+2^2+2^3+...+2^{2018}\)
\(2A-A=2^{2018}-1hayA=2^{2018}-1\)
2; 3 tuong tu
1) A = 1 + 2 + 22 + 23 + .... + 22018
2A = 2 + 22 + 23 + 24 + ..... + 22019
2A - A = ( 2 + 22 + 23 + 24 + ..... + 22019 ) - ( 1 + 2 + 22 + 23 + .... + 22018 )
Vậy A = 22019 - 1
2) B = 1 + 3 + 32 + 33 + ..... + 32018
3A = 3 + 32 + 33 + ...... + 32019
3A - A = ( 3 + 32 + 33 + ...... + 32019 ) - ( 1 + 3 + 32 + 33 + ..... + 32018 )
2A = 32019 - 1
Vậy A = ( 32019 - 1 ) : 2
3) C = 1 + 4 + 42 + 43 + ...... + 42018
4A = 4 + 42 + 43 + ...... + 42019
4A - A = ( 4 + 42 + 43 + ...... + 42019 ) - ( 1 + 4 + 42 + 43 + ...... + 42018 )
3A = 42019 - 1
Vậy A = ( 42019 - 1 ) : 3
Đặt \(D=1^2+2^2+3^2+...+2018^2\)
\(D=1\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+...+2018\left(2019-1\right)\)
\(D=1.2-1+2.3-2+3.4-3+...+2018.2019-2018\)
\(D=\left(1.2+2.3+...+2018.2019\right)-\left(1+2+3+...+2018\right)\)
Đặt \(A=1.2+2.3+...+2018.2019\)
\(\Rightarrow3A=1.2.3+2.3.\left(4-1\right)+...+2018.2019\left(2020-2017\right)\)
\(\Rightarrow3A=2018.2019.2010\Rightarrow A=\frac{2018.2019.2020}{3}\)
Đặt \(B=1+2+3+...+2018\)
\(B=\frac{\left(2018+1\right)\left(2018-1+1\right)}{2}=\frac{2019.2018}{2}\)
\(\Rightarrow D=A+B=\frac{2018.2019.2020}{3}+\frac{2019.2018}{2}\)
\(\Rightarrow D=\frac{2018.2019.2020.2+2019.2018.3}{6}\)