K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2018

a) \(P=\dfrac{\sqrt{a^3}-\sqrt{b^3}}{a-b}-\dfrac{a}{\sqrt{a}+\sqrt{b}}-\dfrac{b}{\sqrt{b}-\sqrt{a}}=\dfrac{a\sqrt{a}-b\sqrt{b}}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}-\dfrac{a\left(\sqrt{a}-\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{b\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\dfrac{a\sqrt{a}-b\sqrt{b}}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}-\dfrac{a\sqrt{a}-a\sqrt{b}}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{b\sqrt{a}+b\sqrt{b}}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\dfrac{a\sqrt{a}-b\sqrt{b}-a\sqrt{a}+a\sqrt{b}+b\sqrt{a}+b\sqrt{b}}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\dfrac{a\sqrt{b}+b\sqrt{a}}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\dfrac{\sqrt{ab}}{\sqrt{a}-\sqrt{b}}\)

b) Ta có \(\left(a-1\right)\left(b-1\right)+2\sqrt{ab}=1\Leftrightarrow ab-a-b+1+2\sqrt{ab}=1\Leftrightarrow ab=\left(\sqrt{a}-\sqrt{b}\right)^2\Leftrightarrow\left(\dfrac{\sqrt{ab}}{\sqrt{a}-\sqrt{b}}\right)^2=1\Leftrightarrow\left|\dfrac{\sqrt{ab}}{\sqrt{a}-\sqrt{b}}\right|=1\Leftrightarrow\dfrac{\sqrt{ab}}{\sqrt{a}-\sqrt{b}}=1\Leftrightarrow P=1\)(Vì b>a>0)

Vậy \(\left(a-1\right)\left(b-1\right)+2\sqrt{ab}=1\) thì P=1

19 tháng 6 2017

Bài 1 : Rút gọn biểu thức :

\(\left(2-\sqrt{2}\right)\left(-5\sqrt{2}\right)-\left(3\sqrt{2}-5\right)^2\)

\(=\left(-10\sqrt{2}+10\right)-\left(18-30\sqrt{2}+25\right)\)

\(=\left(-10\sqrt{2}+10\right)-\left(7-30\sqrt{2}\right)\)

\(=-10\sqrt{2}+10-7+30\sqrt{2}\)

\(=20\sqrt{2}+3\)

19 tháng 6 2017

Bài 2:

a) ĐKXĐ : x # 4 ; x # - 4

P = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{2+5\sqrt{x}}{4-x}\)

P =\(\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{2+5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

P = \(\dfrac{x+2\sqrt{x}+\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

P = \(\dfrac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

P = \(\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)

b ) Để P = 2 \(\Leftrightarrow\dfrac{3\sqrt{x}}{\sqrt{x}+2}\) = 2

\(\Leftrightarrow3\sqrt{x}=2\sqrt{x}+4\)

\(\Leftrightarrow\sqrt{x}=4\)

\(\Leftrightarrow x=16\)

Vậy, để P = 2 thì x = 16.

12 tháng 10 2017

chỗ đầu mình nhầm B = \(\left(\sqrt{a}+\dfrac{b-\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\right):\left(....\right)\)

27 tháng 10 2017

A=(\(\dfrac{\left(x+4\right)}{3\left(x+2\right)}-\dfrac{1}{\left(x+2\right)^2}\))(\(\dfrac{x+5+x-1}{x+5}\))
A=\(\dfrac{\left(x+4\right)\left(x+2\right)-3}{3\left(x+2\right)^2}\cdot\dfrac{2x+2}{x+5}\)
A=\(\dfrac{x^2+2x+4x+8-3}{3\left(x-2\right)}\cdot\dfrac{2}{x+5}\)
A=\(\dfrac{x^2+6x+5}{3\left(x-2\right)}\cdot\dfrac{2}{x+5}\)
A=\(\dfrac{x^2+6x+9-4}{3\left(x-2\right)}\cdot\dfrac{2}{x+5}\)
A=\(\dfrac{\left(x+3\right)^2-4}{3\left(x-2\right)}\cdot\dfrac{2}{x+5}\)
A=\(\dfrac{2\left(x+3-2\right)\left(x+3+2\right)}{3\left(x-2\right)\left(x+5\right)}\)
A=\(\dfrac{2\left(x+1\right)}{3\left(x-2\right)}\)

27 tháng 10 2017

TKS @Hà minh nha

Câu 1: 

Sửa đề: \(P=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)

a: \(=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)

\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}\)

\(=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)

b: Để P>0 thì căn a-2>0

=>a>4

17 tháng 7 2021

\(D=\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right)\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(D=\frac{x-2+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{x+2\sqrt{x}-\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(D=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{x}+1}{\sqrt{x}}\)

\(E=\left(1+\frac{x+\sqrt{x}}{\sqrt{x}+1}\right)\left(1+\frac{x-\sqrt{x}}{1-\sqrt{x}}\right)=\left(1+\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right)\left(1-\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right)\)

\(E=\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)=1-x\)

18 tháng 7 2021

ĐK : a >= 0 , a khác 1

\(C=\left[\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}-\frac{\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right]\div\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)

\(=\frac{a+\sqrt{a}-\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\times\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}+1}=\frac{a}{\sqrt{a}+1}\)

28 tháng 10 2022

Sửa đề; \(A=\left(\dfrac{a\sqrt{a}-3}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-3\right)}-\dfrac{2\left(\sqrt{a}-3\right)}{\sqrt{a}+1}-\dfrac{\sqrt{a}+3}{\sqrt{a}-3}\right):\dfrac{a+8}{a-1}\)

\(A=\dfrac{a\sqrt{a}-3-2a+12\sqrt{a}-18-a-4\sqrt{a}-3}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-3\right)}:\dfrac{a+8}{a-1}\)

\(=\dfrac{a\sqrt{a}-3a+8\sqrt{a}-24}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-3\right)}\cdot\dfrac{a-1}{a+8}\)

\(=\sqrt{a}-1\)

16 tháng 10 2022

b: \(=\left(\sqrt{ab}+\dfrac{2\sqrt{ab}}{a}-\sqrt{\dfrac{a^2+1}{ab}}\right)\cdot\sqrt{ab}\)

\(=ab+\dfrac{2ab}{a}-\sqrt{a^2+1}=ab+2b-\sqrt{a^2+1}\)

c: \(=2\sqrt{6b}-6\sqrt{18}+10\sqrt{12}-\sqrt{48}\)

\(=2\sqrt{6b}-18\sqrt{2}+20\sqrt{3}-4\sqrt{3}\)

\(=2\sqrt{6n}-18\sqrt{2}+16\sqrt{3}\)

d: \(=\dfrac{\sqrt{3}\left(\sqrt{5}-\sqrt{2}\right)}{\sqrt{7}\left(\sqrt{5}-\sqrt{2}\right)}=\dfrac{\sqrt{21}}{7}\)