\(x^{n-1}\left(x+y\right)-y\left(x^{n-1}+y^{n-1}\right)\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2020

a) \(x^{n-1}\left(x+y\right)-y\left(x^{n-1}+y^{n-1}\right)\)

\(=x^{n-1}x+x^{n-1}y-x^{n-1}y-y^{n-1}y\)

\(=x^n-y^n\)

b) \(6x^n\left(x^2-1\right)+2x^3\left(3x^{n+1}+1\right)\)

\(=6x^nx^2-6x^n+2x^33x^{n+1}+2x^3\)

\(=6x^{n+2}-6x^n+6x^{3+n+1}+2x^3\)

\(=6x^{n+2}-6x^n+6x^{n+4}+2x^3\)

Đề có sai ko vậy bạn ???

a) Ta có: \(x^{n-1}\left(x+y\right)-y\left(x^{n-1}+y^{n-1}\right)\)

\(=x^n+x^{n-1}\cdot y-x^{n-1}\cdot y-y\cdot y^{n-1}\)

\(=x^n-y^n\)

19 tháng 4 2017

a) x (x - y) + y (x - y) = x2 – xy+ yx – y2

= x2 – xy+ xy – y2

= x2 – y2

b) xn – 1 (x + y) – y(xn – 1 + yn – 1) =xn+ xn – 1y – yxn – 1 - yn

= xn + xn – 1y - xn – 1y - yn

= xn – yn.



Bài giải:

a) x (x - y) + y (x - y) = x2 – xy+ yx – y2

= x2 – xy+ xy – y2

= x2 – y2

b) xn – 1 (x + y) – y(xn – 1 + yn – 1) =xn+ xn – 1y – yxn – 1 - yn

= xn + xn – 1y - xn – 1y - yn

= xn – yn.



17 tháng 8 2018

\(2a,\left(6x+7\right)\left(2x-3\right)-\left(4x+1\right)\left(3x-\frac{7}{4}\right)\)

\(=12x^2-18x+14x-21-12x^2+7x-3x+\frac{7}{4}\)

\(=-21+\frac{7}{4}\)chứng tỏ biểu thức ko phụ thuộc vào biến x

17 tháng 8 2018

3, Đặt 2n+1=a^2; 3n+1=b^2=>a^2+b^2=5n+2 chia 5 dư 2

Mà số chính phương chia 5 chỉ có thể dư 0,1,4=>a^2 chia 5 dư 1, b^2 chia 5 dư 1=>n chia hết cho 5(1)

Tương tự ta có b^2-a^2=n

Vì số chính phươn lẻ chia 8 dư 1=>a^2 chia 8 dư 1 hay 2n chia hết cho 8=> n chia hết cho 4=> n chẵn

Vì n chẵn => b^2= 3n+1 lẻ => b^2 chia 8 dư 1

Do đó b^2-a^2 chia hết cho 8 hay n chia hết cho 8(2)

Từ (1) và (2)=> n chia hết cho 40

                 

2 tháng 7 2019

A=5; B=3; C=24 không phụ thuộc x; câu D thì mong bạn xem lại đề

2 tháng 7 2019

\(A=\left(x^3+x^2+x\right)-\left(x^3+x^2\right)-x+5\)5

\(A=x^3+x^2+x-x^3-x^2-x+5\)

=> A=5

=> A luôn = 5 với mọi x => A không phụ thuộc vào x

\(B=x\left(2x+1\right)-x^2\left(x+2\right)+x^3-x+3\)

\(B=\left(2x^2+x\right)-\left(x^3+2x^2\right)+x^3-x+3\)

\(B=2x^2+x-x^3-2x^2+x^3-x+3\)

=> B= 3

=> B luôn =3 với mọi x => B không phụ thuộc vào x

\(C=4\left(6-x\right)+x^2\left(2+3x\right)-x\left(5x-4\right)+3x^2\left(1-x\right)\)

\(C=24-4x+2x^2+3x^3-5x^2+4x+3x^2-3x^3\)

C=24

=> C=24 với mọi x => C không phụ thuộc vào x

Câu D kí tự cuối có vẻ bạn gõ sai nên mình không làm được, sorry nhiều

2 tháng 7 2019

A = x(x2 + x + 1) - x2(x + 1) - x + 5

A = x.x2 + x.x + x.1 + (-x2).x + (-x2).1 - x + 5

A = x3 + x2 + x - x3 - x2 - x + 5

A = (x3 - x3) + (x2 - x2) + (x - x) + 5

A = 0 + 0 + 0 + 5

A = 5

Vậy: Biểu thức không phụ thuộc giá trị của biến.

B = x(2x + 1) - x2(x + 2) + x3 - x + 3

B = x.2x + x.1 + (-x2).x + (-x2).2 + x3 - x + 3

B = 2x2 + x - x3 - 2x2 + x3 - x + 3

B = (2x2 - 2x2) + (x - x) + (-x3 + x3) + 3

B = 0 + 0 + 0 + 3

B = 3

Vậy: Biểu thức không phụ thuộc giá trị của biến.

C = 4(6 - x) + x2(2 + 3x) - x(5x - 4) + 3x2(1 - x)

C = 4.6 + 4.(-x) + x2.2 + x2.3x + (-x).5x + (-x).(-4) + 3x2.1 + 3x2.(-x)

C = 24 - 4x + 2x2 + 3x3 - 5x2 + 4x + 3x2 - 3x3

C = 24 + (-4x + 4x) + (2x2 - 5x2 + 3x2) + (3x3 - 3x3)

C = 24 + 0 + 0 + 0

C = 24

Vậy: Biểu thức không phụ thuộc giá trị của biến.

D viết sai thì chịu

19 tháng 8 2015

a) \(x\left(x-y\right)+y\left(x-y\right)\)

\(=x^2-xy+xy-y^2\)

\(=x^2-y^2\)

b) \(x^{n-1}\left(x+y\right)-y\left(x^{n-1}+y^{n-1}\right)\)

\(=x^n+x^{n-1}y-x^{n-1}y-y^n\)

\(=x^n-y^n\)

19 tháng 6 2017

a) \(\left(3x^{n+1}-y^{n-1}\right)-3\left(x^{n+1}+5y^{n-1}\right)-4\left(x^{n+1}+2y^{n-1}\right)\)

\(=3x^{n+1}-y^{n-1}-3x^{n+1}-15y^{n-1}+4x^{n+1}+8y^{n-1}\)

\(=-8y^{n-1}+4x^{n+1}\)

b) \(\left(\dfrac{3}{4}x^{n+1}-\dfrac{1}{2}y^n\right)\cdot2xy-\left(\dfrac{2}{3}x^{n+1}-\dfrac{5}{6}y^n\right)\cdot7xy\)

\(=\dfrac{3}{2}x^{n+2}y-xy^{n+1}+\left(-\dfrac{2}{3}x^{n+1}-\dfrac{5}{6}y^n\right)\cdot7xy\)

\(=\dfrac{3}{2}x^{n+2}y-xy^{n+1}-\dfrac{14}{3}x^{n+2}y+\dfrac{35}{6}xy^{n+1}\)

\(=-\dfrac{19}{6}x^{n+2}y+\dfrac{29}{6}xy^{n+1}\)

19 tháng 6 2017

a)\(\left(3x^{n+1}-y^{n-1}\right)-3\left(x^{n+1}+5y^{n-1}\right)+4\left(x^{n+1}+2y^{n-1}\right)\)

\(=3x^{n+1}-y^{n-1}-3x^{n+1}-15y^{n-1}+4x^{n+1}+8y^{n-1}\)

\(=4x^{n+1}-8y^{n-1}\) \(\left(=4\left(x^{n+1}-2y^{n-1}\right)\right)\)