Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
điều kiện -4<=x<=4x<=4
\(a,\sqrt{\left(x+4\right)^2}+\sqrt{\left(x-4\right)^2}\)
\(A=\left|x+4\right|+\left|x-4\right|\)
KẾT HỢP ĐIỀU KIỆN
\(A=x+4+4-x\)
\(A=8\)
\(B=\sqrt{\left(3x\right)^2-6x+1}+\sqrt{\left(2x\right)^2-12x+3^2}\)
\(B=\sqrt{\left(3x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)
\(B=\left|3x-1\right|+\left|2x-3\right|\)
\(TH1:x>=\frac{3}{2}\)
\(B=3x-1+2x-3\)
\(B=5x-4\)
\(TH2:\frac{1}{3}< =x< \frac{3}{2}\)
\(B=3x-1-2x+3\)
\(B=x+2\)
\(TH3:x< \frac{1}{3}\)
\(B=-3x+1-2x+3\)
\(B=4-5x\)
câu c và câu d tương tự
câu c tách ra: \(C=\sqrt{\left(\sqrt{x}-3\right)^2}-\sqrt{\left(2\sqrt{x}+1\right)^2}\)
còn câu d tách ra :\(D=\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}\)
\(D=\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}\)
bạn tự làm nốt câu c, d nha
\(P=\sqrt{x-2-2\sqrt{x-3}}-\sqrt{x+1-4\sqrt{x-3}}=\sqrt{x-3-2\sqrt{x-3}+1}-\sqrt{x-3-4\sqrt{x-3}+4}=\sqrt{\left(\sqrt{x-3}-1\right)^2}-\sqrt{\left(\sqrt{x-3}-2\right)^2}=\left|\sqrt{x-3}-1\right|-\left|\sqrt{x-3}-2\right|\)Ta có 3≤x≤4⇒\(\left\{{}\begin{matrix}\sqrt{x-3}-1\le0\\\sqrt{x-3}-2< 0\end{matrix}\right.\)
Vậy \(P=1-\sqrt{x-3}-2+\sqrt{x-3}=-1\)
\(A=\sqrt{3+\sqrt{5}}+\sqrt{7-3.\sqrt{5}}-\sqrt{2}\)
\(\sqrt{2}.A=\sqrt{5+2\sqrt{5}.1+1}+\sqrt{9-2.3.\sqrt{5}+5}-2\)
\(\sqrt{2}.A=\sqrt{5}+1+3-\sqrt{5}-2=2\)
\(\Rightarrow A=\sqrt{2}\)
ĐKXĐ: \(\hept{\begin{cases}2x-4\ge0\\x+2.\sqrt{2x-4}\ge0\\x-2\sqrt{2x-4}\end{cases}}\Leftrightarrow x\ge2\)
\(\sqrt{x+2.\sqrt{2x-4}}+\sqrt{x-2.\sqrt{2x-4}}\)
\(=\sqrt{x-2+2.\sqrt{x-2}.\sqrt{2}+2}+\sqrt{x-2-2.\sqrt{x-2}.\sqrt{2}+2}\)
\(=\sqrt{x-2}+\sqrt{2}+\left|\sqrt{x-2}-\sqrt{2}\right|\)
Tự phá trị tuyệt đối
a) \(\sqrt{\sqrt{2\sqrt{6}+6+2\sqrt{2}+2\sqrt{3}-\sqrt{5+2\sqrt{6}}}}\)
\(=\sqrt{1+\sqrt{2}+\sqrt{3}-\left(\sqrt{3}+\sqrt{2}\right)}=1\)
b) \(A=\sqrt{x^2-6x+9}-\dfrac{x^2-9}{\sqrt{9-6x+x^2}}\)
\(=\left|x-3\right|-\dfrac{\left(x-3\right)\left(x+3\right)}{\left|x-3\right|}\)
Th1: x-3 < 0
\(A=\left(3-x\right)-\dfrac{\left(x-3\right)\left(x+3\right)}{3-x}=3-x+x-3=0\)
Th2: x-3 > 0
\(A=x-3-\dfrac{\left(x-3\right)\left(x+3\right)}{x-3}=x-3-\left(x+3\right)=-6\)
c)
Đk: x >/ 1 \(B=\dfrac{\sqrt{x+\sqrt{4\left(x-1\right)}}-\sqrt{x-\sqrt{4\left(x-1\right)}}}{\sqrt{x^2-4\left(x-1\right)}}\cdot\left(\sqrt{x-1}-\dfrac{1}{\sqrt{x-1}}\right)\)
\(=\dfrac{\sqrt{x+2\sqrt{x-1}}-\sqrt{x-2\sqrt{x-1}}}{\sqrt{x^2-4\left(x-1\right)}}\cdot\dfrac{x-2}{\sqrt{x-1}}\)
\(=\dfrac{\sqrt{x-1}+1-\left|\sqrt{x-1}-1\right|}{\left|x-2\right|}\cdot\dfrac{x-2}{\sqrt{x-1}}\)
Th1: \(x-2\ge0\Leftrightarrow x\ge2\)
\(B=\dfrac{\sqrt{x-1}+1-\sqrt{x-1}+1}{x-2}\cdot\dfrac{x-2}{\sqrt{x-1}}=\dfrac{2}{\sqrt{x-1}}\)
Th2: \(x-2\le0\Leftrightarrow x\le2\)
kết hợp với đk, ta được: 1 \< x \< 2
\(=\dfrac{\sqrt{x-1}+1-\sqrt{x-1}-1}{2-x}\cdot\dfrac{x-2}{\sqrt{x-1}}=0\)
d) \(A=\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}=\sqrt{x-2}+\sqrt{2}+\left|\sqrt{x-2}-\sqrt{2}\right|=\sqrt{x-2}+\sqrt{2}-\sqrt{x-2}+\sqrt{2}=2\sqrt{2}\)
chẳng biết có sai sót gì 0 nữa, xin lỗi tớ 0 xem lại đâu vì chán quá!
ĐKXĐ:
\(2x-4\ge0\)và \(x+2\sqrt{2x-4}\ge0\)và \(x-2\sqrt{2x-4}\ge0\)
<=>\(2x\ge4\)và \(x\ge2\sqrt{2x-4}\)
<=>\(x\ge2\text{ và }x^2\ge8x-16\)
<=>\(x\ge2\text{ và }\left(x-4\right)^2\ge0\)
=>\(x\ge2\)
\(A=\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\)
\(=\sqrt{x-2+2.\sqrt{2}\sqrt{x-2}+2}+\sqrt{x-2-2.\sqrt{2}\sqrt{x-2}+2}\)
\(=\sqrt{\left(\sqrt{x-2}+2\right)^2}=\sqrt{\left(\sqrt{x-2}-2\right)^2}\)
\(=\left|\sqrt{x-2}+2\right|+\left|\sqrt{x-2}-2\right|\)
Với \(\sqrt{x-2}-2>0\) thì \(A=\sqrt{x-2}+2+\sqrt{x-2}-2=2\sqrt{x-2}\)
Với \(\sqrt{x-2}-2<0\) thì \(A=\sqrt{x-2}+2+2-\sqrt{x-2}=4\)
\(\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\)
\(=\sqrt{x-2+2\sqrt{2}\sqrt{x-2}+2}+\sqrt{x-2-2\sqrt{2}\sqrt{x-2}+2}\)
\(=\sqrt{\left(\sqrt{2}+\sqrt{x-2}\right)^2}+\sqrt{\left(\sqrt{2}-\sqrt{2-x}\right)^2}\)
\(=\sqrt{2}+\sqrt{x-2}+\sqrt{2}-\sqrt{x-2}=2\sqrt{2}\)