\(\sqrt{37-20\sqrt{3}}-\sqrt{37+20\sqrt{3}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2019

\(\sqrt{12-2.2\sqrt{3}.5+25}-\sqrt{12+2.2\sqrt{3}.5+25}\)

\(\sqrt{\left(2\sqrt{3}-5\right)^2}-\sqrt{\left(2\sqrt{3}+5\right)^2}\)

\(|2\sqrt{3}-5|-2\sqrt{3}-5\)

=\(5-2\sqrt{3}-2\sqrt{3}-5=-4\sqrt{3}\)

28 tháng 7 2020

bây giờ vẫn còn công chúa

NV
17 tháng 9 2019

\(=\sqrt{\left(5-2\sqrt{3}\right)^2}+\sqrt{\left(5+2\sqrt{3}\right)^2}\)

\(=\left|5-2\sqrt{3}\right|+\left|5+2\sqrt{3}\right|\)

\(=5-2\sqrt{3}+5+2\sqrt{3}\)

\(=10\)

9 tháng 4 2020

Bài 1 : 

Ta có : 

\(\sqrt{37-20\sqrt{3}}+\sqrt{37+20\sqrt{3}}=\sqrt{25-2.5.2\sqrt{3}+12}\)

\(+\sqrt{25+2.5.2\sqrt{3}+12}\)

\(=\sqrt{\left(5-2\sqrt{3}\right)^2}+\sqrt{\left(5+2\sqrt{3}\right)^2}\)

\(5-2\sqrt{3}+5+2\sqrt{3}\)

\(=5+5=10\)

9 tháng 4 2020

Bài 2 : 

Với x , y , z > 0 . Ta có : 

+ ) \(\frac{x}{y}+\frac{y}{x}\ge2\left(1\right)\)

+ ) \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\left(2\right)\)

+ ) \(x^2+y^2+z^2\ge xy+yz+zx\Leftrightarrow\frac{x^2+y^2+z^2}{xy+yz+zx}\ge1\left(3\right)\)

Xảy ra đăng thức ở : \(\left(1\right),\left(2\right),\left(3\right)\Leftrightarrow x=y=z\) . Ta có : 

\(P=\frac{ab+bc+ca}{a^2+b^2+c^2}+\left(a+b+c\right)^2.\frac{\left(a+b+c\right)}{abc}\)

\(=\frac{ab+bc+ca}{a^2+b^2+c^2}+\left(a^2+b^2+c^2+2ab+2bc+2ca\right).\frac{\left(a+b+c\right)}{abc}\)

Áp dụng các bất đẳng thức (1) , (2) , (3) ta được : 

\(P\ge\frac{ab+bc+ca}{a^2+b^2+c^2}+\left(a^2+b^2+c^2\right).\frac{9}{ab+bc+ca}+2.9\)

\(=\left(\frac{ab+bc+ca}{a^2+b^2+c^2}+\frac{a^2+b^2+c^2}{ab+bc+ca}\right)+8.\frac{a^2+b^2+c^2}{ab+bc+ca}+18\)

\(\ge2+8+18=28\)

Dấu " = "  xảy ra \(\Leftrightarrow\hept{\begin{cases}a^2+b^2+c^2=ab+bc+ca\\ab=bc=ca\end{cases}\Leftrightarrow a=b=c}\)

13 tháng 9 2017

\(\sqrt{37-20\sqrt{3}}+\sqrt{37+20\sqrt{3}}\)

\(=\sqrt{37-2\sqrt{300}}+\sqrt{37+2\sqrt{300}}\)

\(=\sqrt{\left(5-\sqrt{12}\right)^2}+\sqrt{\left(5-\sqrt{12}\right)^2}\)

\(=|5-\sqrt{12}|+|5+\sqrt{12}|\)

\(=5-\sqrt{12}+5+\sqrt{12}\)

\(=10\)

7 tháng 12 2016

\(\sqrt{20}-\sqrt{45}+3\sqrt{18}+\sqrt{72}\)

\(=\sqrt{4.5}-\sqrt{9.5}+3\sqrt{18}+\sqrt{4.18}\)

\(=2\sqrt{5}-3\sqrt{5}+3\sqrt{18}+2\sqrt{18}\)

\(=-\sqrt{5}+5\sqrt{18}\)

8 tháng 12 2016

\(\sqrt{20}-\sqrt{45}+3\sqrt{18}+\sqrt{72}\)

\(=2\sqrt{5}-3\sqrt{5}+3\sqrt{18}+2\sqrt{18}\)

\(=-\sqrt{5}+5\sqrt{18}\)

14 tháng 6 2016

=\(16\sqrt{2\sqrt{3}}-2\sqrt{5\sqrt{3}}-6\sqrt{5\sqrt{3}}\)=\(16\sqrt{2\sqrt{3}}-8\sqrt{5\sqrt{3}}\)

24 tháng 4 2017

a) \(2\sqrt{40\sqrt{12}}-2\sqrt{\sqrt{75}}-3\sqrt{5\sqrt{48}}\)

\(=2\sqrt{40.2\sqrt{3}}-2\sqrt{5\sqrt{3}}-3\sqrt{5.4\sqrt{3}}\)

\(=\left(2\sqrt{80}-2\sqrt{5}-3\sqrt{20}\right).\sqrt{\sqrt{3}}\)

\(=\left(8\sqrt{5}-2\sqrt{5}-6\sqrt{5}\right).\sqrt{\sqrt{3}}=0\)

b) \(2\sqrt{8\sqrt{3}}-2\sqrt{5\sqrt{3}}-3\sqrt{20\sqrt{3}}\)

\(=\left(4\sqrt{2}-2\sqrt{5}-6\sqrt{5}\right).\sqrt{\sqrt{3}}\)

\(=\left(4\sqrt{2}-8\sqrt{5}\right).\sqrt{\sqrt{3}}\)

\(=\sqrt{\sqrt{3}}\left(\sqrt{2}-2\sqrt{5}\right)\)

24 tháng 9 2017

sai rồi

ở đáp án còn số 4 ở đầu nữa

18 tháng 8 2016

a/ \(2\sqrt{40\sqrt{12}}-2\sqrt{\sqrt{75}}-3\sqrt{5\sqrt{48}}=2\sqrt{4.2.5\sqrt{4.3}}-2\sqrt{\sqrt{25.3}}-3\sqrt{5\sqrt{16.3}}\)

\(2.2\sqrt{2.5.2\sqrt{3}}-2\sqrt{5\sqrt{3}}-3\sqrt{5.4\sqrt{3}}=4.2\sqrt{5\sqrt{3}}-2\sqrt{5\sqrt{3}}-3.2\sqrt{5\sqrt{3}}\)

\(\sqrt{5\sqrt{3}}\left(8-2-6\right)=\sqrt{5\sqrt{3}}.0=0\)

18 tháng 8 2016

b/ \(2\sqrt{8\sqrt{3}}-2\sqrt{5\sqrt{3}}-3\sqrt{20\sqrt{3}}=2\sqrt{2.4\sqrt{3}}-2\sqrt{5\sqrt{3}}-3\sqrt{4.5\sqrt{3}}\)

\(4\sqrt{2\sqrt{3}}-2\sqrt{5\sqrt{3}}-6\sqrt{5\sqrt{3}}=4\sqrt{2\sqrt{3}}-8\sqrt{5\sqrt{3}}\)