Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Nhã Doanh9GP
- Phạm Nguyễn Tất Đạt8GP
- Akai Haruma7GP
- nguyen thi vang5GP
- Nguyễn Thị Ngọc Thơ5GP
- kuroba kaito4GP
- Mashiro Shiina4GP
- Nguyễn Phạm Thanh Nga4GP
- lê thị hương giang3GP
- Aki Tsuki3GP
2.
a/ Áp dụgn hệ quả bđt cô si,ta có :
\(A=xy+yz+zx\le\dfrac{\left(x+y+z\right)}{3}=\dfrac{a^2}{3}\)
Vậy GTLN A =a^2/3 khi x= y =z =a/3
b/Áp dụng BĐT Cô-Si dạng Engel,ta có :
\(B=\dfrac{x^2}{1}+\dfrac{y^2}{1}+\dfrac{z^2}{z}\ge\dfrac{\left(x+y+z\right)^2}{3}=\dfrac{a^2}{3}\)
Vậy GTNN của B = a^2/2 khi x=y=z =a/3
\(B=\dfrac{3x}{1-x}+\dfrac{4\left(1-x\right)}{x}+7\ge2\sqrt{\dfrac{3x}{1-x}.\dfrac{4\left(1-x\right)}{x}}+7=7+4\sqrt{3}=\left(2+\sqrt{3}\right)^2\)
Vậy min B = \(\left(2+\sqrt{3}\right)^2\) khi \(\dfrac{3x}{1-x}=\dfrac{4\left(1-x\right)}{x}\Leftrightarrow x=\left(\sqrt{3}-1\right)^2\)
bài 28
\(P=\frac{\left[a^2-\left(b+c\right)^2\right]\left(a+b-c\right)}{\left(a+b+c\right)\left[\left(a-c\right)^2-b^2\right]}\)
=>\(P=\frac{\left(a-b-c\right)\left(a+b+c\right)\left(a+b-c\right)}{\left(a+b+c\right)\left(a-c-b\right)\left(a-c+b\right)}\)
=>\(P=1\)
Bài 30 phải là xy+y+x=3.
Ta có: xy+y+x=3 => (x+1)(y+1)=4(1)
yz+y+z=8 => (y+1)(z+1)=9(2)
zx+x+z=15 => (x+1)(z+1)=16(3)
Nhân (1), (2) và (3) theo vế, ta có:
[(x+1)(y+1)(z+1)]2=576
=> (x+1)(y+1)(z+1)=24(I) hoặc (x+1)(y+1)(z+1)=-24(II)
Lần lượt thay (1),(2),(3) vào (I),(II), tính x,y,z.
Kết quả: P=43/6 hoặc P=-79/6
Biến đổi vế trái ta có:
\(a^3+b^3+c^3=\left(a+b\right)^3-3ab\left(a+b\right)+c^3\)
\(=\left(a+b+c\right)^3-3\left(a+b\right)c\left(a+b+c\right)-3ab\left(a+b\right)\)
\(=\left(a+b+c\right)^3-3\left(a+b\right)\left(ac+bc+c^2+ab\right)\)
\(=\left(a+b+c\right)^3-3\left(a+b\right)\left(a+c\right)\left(b+c\right)\)*
Vì \(a+b+c=0\)\(\Rightarrow\)*\(=-3\left(a+b\right)\left(a+c\right)\left(b+c\right)\)
cũng có \(\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\) Thay vào biểu thức trên ta được
\(-3\left(a+b\right)\left(b+c\right)\left(c+a\right)=3abc\)
\(VT=VP\)=> đpcm
vì \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\Rightarrow\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=\dfrac{3}{xyz}\)
ta có \(B=\dfrac{xyz}{x^3}+\dfrac{xyz}{y^3}+\dfrac{xyz}{z^3}=xyz\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)\)
mà \(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=\dfrac{3}{xyz}\Rightarrow B=xyz.\dfrac{3}{xyz}=3\)
Câu a dùng hằng đẳng thức mở rộng là được,tối rồi lười lắm,t giúp câu b
a: \(=\sqrt{\dfrac{x^2+2x}{y^4}}=\dfrac{\sqrt{x^2+2x}}{y^2}\)
b: \(=\dfrac{\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}=\sqrt{x}\)
c: \(=\left(a-b\right)\cdot\sqrt{\dfrac{a+b}{\left(a-b\right)}}\)
\(=\sqrt{\dfrac{\left(a+b\right)\cdot\left(a-b\right)^2}{a-b}}=\sqrt{a^2-b^2}\)