K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2021

`M=(2a+2ab-b-1)/(3b(2a-1)+6a-3)`

`=(2a-1+b(2a-1))/(3(2a-1)(b+1))`

`=((2a-1)(b+1))/(3(2a-1)(b+1))`

`=1/3`

`=>` CHọn D

Chọn D

Câu 3: 

\(A=\dfrac{\left(y+1\right)\left(x-1\right)}{\left(x-1\right)\left(y+1\right)}=1\)

\(B=\dfrac{2a\left(1+b\right)-\left(b+1\right)}{3a\left(2a-1\right)+3\left(2a-1\right)}=\dfrac{\left(b+1\right)\left(2a-1\right)}{3\left(a+1\right)\left(2a-1\right)}=\dfrac{b+1}{3a+3}\)

Câu 4: 

\(\left|x\right|+2006>=2006\)

=>A<=1009/1003

Dấu '=' xảy ra khi x=0

\(\left|x\right|+2018>=2018\)

=>B>=-2018/2005

Dấu '=' xảy ra khi x=0

25 tháng 7 2020

\(S=\frac{2a+2ab-b-1}{3b\left(2a-1\right)+6a-3}\\ =\frac{2a\left(b+1\right)-\left(b+1\right)}{3b\left(2a-1\right)+3\left(2a-1\right)}\\ =\frac{\left(2a-1\right)\left(b+1\right)}{3\left(b+1\right)\left(2a-1\right)}\\=\frac{1}{3}\)

26 tháng 6 2016

a)\(=\frac{ab+a-b-1}{ab-b+a-1}=1\)(Nhân phá ngoặc)

26 tháng 6 2016

b)\(=\frac{2a+2ab-b-1}{6ab-3b+6a-3}\)(Nhân phá ngoặc)

\(=\frac{2ab+2a-b-1}{3\left(2ab+2a-b-1\right)}=\frac{1}{3}\)

AH
Akai Haruma
Giáo viên
21 tháng 6 2018

Bài 2:

Để \(x^4+ax^3+b\vdots x^2-1\) thì \(x^4+ax^3+b\) phải được viết dưới dạng :

\(x^4+ax^3+b=(x^2-1)Q(x)\) với $Q(x)$ là đa thức thương.

Thay $x=1$ và $x=-1$ lần lượt ta có:

\(\left\{\begin{matrix} 1+a+b=(1^2-1)Q(1)=0\\ 1-a+b=[(-1)^2-1]Q(-1)=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} a+b=-1\\ -a+b=-1\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=0\\ b=-1\end{matrix}\right.\)

PP 2 xin đợi bạn khác giải quyết :)

AH
Akai Haruma
Giáo viên
21 tháng 6 2018

Bài 3:

Ta có: \(\frac{\sqrt{12}-\sqrt{27}-\sqrt{48}}{1-\sqrt{5}+9\sqrt{9-4\sqrt{5}}}=\frac{\sqrt{12}-\sqrt{27}-\sqrt{48}}{1-\sqrt{5}+9\sqrt{5+4-4\sqrt{5}}}\)

\(=\frac{\sqrt{12}-\sqrt{27}-\sqrt{48}}{1-\sqrt{5}+9\sqrt{(2-\sqrt{5})^2}}=\frac{\sqrt{12}-\sqrt{27}-\sqrt{48}}{1-\sqrt{5}+9(\sqrt{5}-2)}=\frac{\sqrt{3}(2-3-4)}{-17+8\sqrt{5}}=\frac{-5\sqrt{3}}{-17+8\sqrt{5}}\)

\(=\frac{5\sqrt{3}}{17-8\sqrt{5}}\)

a: 3x=2y

nên x/2=y/3

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x-y}{2-3}=\dfrac{1}{-1}=-1\)

Do đó: x=-2; y=-3

\(A=\left(-2\right)^3+12\cdot\left(-2\right)^2\cdot\left(-3\right)+48\cdot\left(-2\right)\cdot\left(-3\right)^2-64\cdot\left(-3\right)^3\)

\(=-8+12\cdot4\cdot\left(-3\right)-96\cdot9-64\cdot\left(-27\right)\)

\(=712\)

b: 6a=5b

nên a/5=b/6

Đặt a/5=b/6=k

=>a=5k; b=6k

\(B=\dfrac{2a-3b}{3b-2a}=-1\)

d: \(\left|x-2\right|+\left(y-1\right)^2=0\)

=>x-2=0 và y-1=0

=>x=2 và y=1

\(D=\left|2-2\right|+\dfrac{2-1}{2-1}=0+1=1\)

1) Ta có: \(\frac{a}{3}=\frac{b}{4}\)

\(\Leftrightarrow\frac{a}{15}=\frac{b}{20}\)(1)

Ta có: \(\frac{b}{5}=\frac{c}{7}\)

\(\Leftrightarrow\frac{b}{20}=\frac{c}{28}\)(2)

Từ (1) và (2) suy ra \(\frac{a}{15}=\frac{b}{20}=\frac{c}{28}\)

\(\Leftrightarrow\frac{2a}{30}=\frac{3b}{60}=\frac{c}{28}\)

mà 2a+3b-c=186

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{2a}{30}=\frac{3b}{60}=\frac{c}{28}=\frac{2a+3b-c}{30+60-28}=\frac{186}{62}=3\)

Do đó:

\(\left\{{}\begin{matrix}\frac{2a}{30}=3\\\frac{3b}{60}=3\\\frac{c}{28}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a=90\\3b=180\\c=84\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=45\\b=60\\c=84\end{matrix}\right.\)

Vậy: (a,b,c)=(45;60;84)

2) Ta có: \(\frac{a}{3}=\frac{b}{4}\)

\(\Leftrightarrow\frac{a}{9}=\frac{b}{12}\)(3)

Ta có: \(\frac{b}{3}=\frac{c}{5}\)

\(\Leftrightarrow\frac{b}{12}=\frac{c}{20}\)(4)

Từ (3) và (4) suy ra \(\frac{a}{9}=\frac{b}{12}=\frac{c}{20}\)

\(\Leftrightarrow\frac{2a}{18}=\frac{3b}{36}=\frac{c}{20}\)

mà 2a-3b+c=6

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{2a}{18}=\frac{3b}{36}=\frac{c}{20}=\frac{2a-3b+c}{18-36+20}=\frac{6}{2}=3\)

Do đó:

\(\left\{{}\begin{matrix}\frac{2a}{18}=3\\\frac{3b}{36}=3\\\frac{c}{20}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a=54\\3b=108\\c=60\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=27\\b=36\\c=60\end{matrix}\right.\)

Vậy: (a,b,c)=(27;36;60)