Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(3x-1\right)^2+2\left(9x^2-1\right)+\left(3x+1\right)^2\)
\(=9x^2-6x+1+18x^2+2+9x^2+6x+1\)
\(=36x^2+4\)
\(\left(x^2-1\right)\left(x+3\right)-\left(x-3\right)\left(x^3+3x+9\right)\)
\(=x^3+3x^2-x+3-\left(x^4+3x^2+9x-3x^3-9x-27\right)\)
\(=x^3+3x^2-x+3-x^4-3x^2-9x+3x^3+9x-27\)
\(=\left(3x^2-3x^2\right)+\left(9x-9x\right)-x-\left(27-3\right)+x^3-x^4+3x^3\)
\(=-x-24+x^3-x^4+3x^3\)
\(\left(x+4\right)\left(x-4\right)-\left(x-4\right)^2\)
\(=x^2-16-\left(x-4\right)^2\)
\(=x^2-16-x^2+8x-16\)
\(=8x-32\)
Ta có : \(x^2+8x-20=\left(x-2\right)\left(x+10\right)\)
\(\left|x-2\right|=x-2\Leftrightarrow x\ge0\)
\(\left|x-2\right|=-\left(x-2\right)\Leftrightarrow x\le0\)
Vì \(x\ge0\)suy ra : \(\frac{x\left(x-2\right)}{\left(x-2\right)\left(x+10\right)}=\frac{x}{x+10}\)
Vì \(x\le0\)suy ra : \(\frac{x\left[-\left(x-2\right)\right]}{\left(x-2\right)\left(x+10\right)}=\frac{-x}{x+10}\)
Bài làm
Ta có: A = x| x-2 | / x²+ 8x - 20
A = x| x - 2 | / x² - 2x + 10x - 20
A = x| x - 2 | / x( x - 2 ) + 10( x - 2 )
A = x| x - 2 | / ( x + 10 )( x - 2 )
Nếu x ≥ 2 => x - 2 ≥ 0 => |x - 2| <=> x - 2
Nên A = x( x - 2 )/( x +10 )( x - 2 ) = x/x + 10
Nếu x ≤ 2 => x - 2 ≤ 0 => | x - 2 | = -( x - 2 )
Nên A = x.[ -( x - 2 ) ]/ ( x + 10 )( x + 2 ) = -x/ x + 10
Vậy từ biểu thức trên, ta có thể rút gọn thành hai biểu thức mới là A = x/ x + 10 và A = -x/ x +10
Do mik lm bằng đt nên k vt đc phân số. Thông cảm
1)
a) \(\left(-48\right)^3:16^3\)
\(=\left(-48:16\right)^3\)
\(=\left(-3\right)^3\)
\(=-27.\)
b) \(\left(\frac{9}{10}\right)^6:\left(\frac{17}{-20}\right)^6\)
\(=\left(\frac{9}{10}:\frac{17}{-20}\right)^6\)
\(=\left(-\frac{18}{17}\right)^6\)
Chúc em học tốt!
\(\frac{-13^3}{\left(2^3\right)^3}:\frac{\left(-2^5\right)^4}{13^4}\)1.
a, (-48)3:163
= \(\left(\frac{-48}{16}\right)^3\)
= (-3)3
b,\(\left(\frac{9}{10}\right)^6\):\(\left(\frac{17}{-20}\right)^6\)
= \(\left(\frac{9}{10}:\frac{17}{-20}\right)^6\)
=\(\left(\frac{-18}{17}\right)^6\)
c, \(\left(\frac{-13}{8}\right)^3:\left(\frac{-32}{13}\right)^4\)
= \(\frac{-13^3}{\left(2^3\right)^3}:\frac{\left(-2^5\right)^4}{13^4}\)
= \(\frac{-13^3}{2^9}.\frac{-13^4}{2^{20}}\)
=\(\frac{13^7}{2^{29}}\)
x2 + 8x - 20 = x2 + 10x - 2x - 20 = x(x+10) - 2(x+10) = (x - 2)(x+ 10)
|x - 2| = x - 2 nếu x > 2; |x - 2| = -(x - 2) = - x + 2 nếu x < 2
Vậy A = \(\frac{x\left(x-2\right)}{\left(x-2\right)\left(x+10\right)}=\frac{x}{x+10}\) nếu x > 2
A = \(\frac{-x\left(x-2\right)}{\left(x-2\right)\left(x+10\right)}=\frac{-x}{x+10}\) nếu x < 2
A=(x/x-2/)/x^2+8x-20=(x/x-2/)/(x-2).(x+10)
TH1:x>=2
A=x.(x-2)/(x-2).(x+10)=x/x+10
TH2:x<2
A=(-x).(x-2)/(x-2).(x+10)=-x/x+10
1) \(A\left(x\right)=-5x^3+3x^4+\frac{5}{7}-8x^2-10x\)
\(A\left(x\right)=3x^4-5x^3-8x^2-10x+\frac{5}{7}\)
\(B\left(x\right)=-2x^4-\frac{2}{7}+7x^2+8x^3+6x\)
\(B\left(x\right)=-2x^4+8x^3+7x^2+6x-\frac{2}{7}\)
2) \(A\left(x\right)=3x^4-5x^3-8x^2-10x+\frac{5}{7}\)
+
\(B\left(x\right)=-2x^4+8x^3+7x^2+6x-\frac{2}{7}\)
\(A\left(x\right)+B\left(x\right)=x^4+3x^3-x^2-4x+\frac{3}{7}\)
\(A\left(x\right)=3x^4-5x^3-8x^2-10x+\frac{5}{7}\)
-
\(B\left(x\right)=-2x^4+8x^3+7x^2+6x-\frac{2}{7}\)
\(A\left(x\right)-B\left(x\right)=5x^4-13x^3-15x^2-16x+1\)
1.
a) \(x\in\left\{4;5;6;7;8;9;10;11;12;13\right\}\)
b) x=0
d) \(x=\frac{-1}{35}\) hoặc \(x=\frac{-13}{35}\)
e) \(x=\frac{2}{3}\)